Экспертные и обучающиеся системы. Экспертные системы в обучении Экспертные и обучающиеся системы

Тема1. ЭОС как компонент интенсивного обучения специалистов.

Лекция 8. Экспертно-обучающие системы.

Сферы применения экспертных систем в менеджменте.

Стоимость экспертных систем.

Развитие экпертных систем.

На протяжении последних двадцати лет специалисты в области интеллектуальных систем ведут активные исследовательские работы в области создания и использования экспертных систем, предназначенных для сферы образования. Появился новый класс экспертных систем - экспертные обучающие системы - наиболее перспективное направление совершенствования программных педагогических средств в сторону процедурность знаний.

Экспертная система - это комплекс компьютерного программного обеспечения, помогающий человеку принимать обоснованные решения. Экспертные системы используют информацию, полученную заранее от экспертов - людей, которые в какой-либо области являются лучшими специалистами.

Экспертные системы должны:

  • хранить знания об определенной предметной области (факты, описания событий и закономерностей);
  • уметь общаться с пользователем на ограниченном естественном языке (т.е. задавать вопросы и понимать ответы);
  • обладать комплексом логических средств для выведения новых знаний, выявления закономерностей, обнаружения противоречий;
  • ставить задачу по запросу, уточнять её постановку и находить решение;
  • объяснять пользователю, каким образом получено решение.

Желательно также, чтобы экспертная система могла:

  • сообщать такую информацию, которая повышает доверие пользователя к экспертной системе;
  • «рассказывать» о себе, о своей собственной структуре

Экспертная обучающая система (ЭОС) - это программа, реализующая ту или иную педагогическую цель на основе знаний эксперта в некоторой предметной области, осуществляя диагностику обучения и управления учением, а также демонстрируя поведение экспертов (специалистов-предметников, методистов, психологов). Экспертность ЭОС заключается в наличии в ней знаний по методике обучения, благодаря которым она помогает преподавателям обучать, а учащимся - учиться.

Архитектура экспертной обучающей системы включает в себя два основных компонента: базу знаний (хранилище единиц знаний) и программный инструмент доступа и обработки знаний, состоящий из механизмов вывода заключений (решения), приобретения знаний, объяснения получаемых результатов и интеллектуального интерфейса.

Обмен данными между обучаемым и ЭОС выполняет программа интеллектуального интерфейса, которая воспринимает сообщения обучаемого и преобразует их в форму представления базы знаний и, наоборот, переводит внутреннее представление результата обработки в формат обучаемого и выдает сообщение на требуемый носитель. Важнейшим требованием к организации диалога обучаемого с ЭОС является естественность, которая не означает буквально формулирование потребностей обучаемого предложениями естественного языка. Важно, чтобы последовательность решения задачи была гибкой, соответствовала представлениям обучаемого и велась в профессиональных терминах.


Наличие развитой системы объяснений (СО) чрезвычайно важно для ЭОС, работающих в области обучения. В процессе обучения такая ЭОС будет выполнять не только активную роль «учителя», но и роль справочника, помогающего обучаемому изучать внутренние процессы, происходящие в системе, с помощью моделирования прикладной области. Развитая СО состоит из двух компонент: активной, включающей в себя набор информационных сообщений, выдаваемых обучаемому в процессе работы, зависящих от конкретного пути решения задачи, полностью определяемых системой; пассивной (основной компоненты СО), ориентированной на инициализирующие действия обучаемого.

Активная компонента СО является развернутым комментарием, сопровождающем действия и результаты, полученные системой. Пассивная компонента СО - это качественно новый вид информационной поддержки, присущей только системам, основанным на знаниях. Эта компонента, помимо развитой системы HELP-ов, вызываемых обучаемым, имеет системы пояснений хода решения задачи. Система пояснений в существующих ЭОС реализуется различными способами. Она может представлять собой: набор информационных справок о состоянии системы; полное или частичное описание пройденного системой пути по дереву решений; список проверяемых гипотез (основания для их формирования и результаты их проверки); список целей, управляющих работой системы, и путей их достижения.

Важной особенностью развитой СО является использование в ней естественного языка общения с обучаемым. Широкое применение систем «меню» позволяет не только дифференцировать информацию, но и в развитых ЭОС судить об уровне подготовленности обучаемого, формируя его психологический портрет.

Однако обучаемого не всегда может интересовать полный вывод решения, содержащий множество ненужных деталей. В этом случае система должна уметь выбирать из цепочки только ключевые моменты с учетом их важности и уровня знаний обучаемого. Для этого в базе знаний необходимо поддерживать модель знаний и намерений обучаемого. Если же обучаемый продолжает не понимать полученный ответ, то система должна в диалоге на основе поддерживаемой модели проблемных знаний обучать его тем или иным фрагментам знаний, т.е. раскрывать более подробно отдельные понятия и зависимости, если даже эти детали непосредственно в выводе не использовались.

Peфepaт нa тeму:

Oглaвлeниe

Создание отчета как объекта базы данных

Способы создания отчета

Создание отчета

Экспертные и обучающиеся системы

Создание отчета как объекта базы данных

Отчет - это форматированное представление данных, которое выводится на экран, в печать или файл. Они позволяют извлечь из базы нужные сведения и представить их в виде, удобном для восприятия, а также предоставляют широкие возможности для обобщения и анализа данных.

При печати таблиц и запросов информация выдается практически в том виде, в котором хранится. Часто возникает необходимость представить данные в виде отчетов, которые имеют традиционный вид и легко читаются. Подробный отчет включает всю информацию из таблицы или запроса, но содержит заголовки и разбит на страницы с указанием верхних и нижних колонтитулов.

Структура отчета в режиме Конструктора

Microsoft Access отображает в отчете данные из запроса или таблицы, добавляя к ним текстовые элементы, которые упрощают его восприятие.

К числу таких элементов относятся:

Заголовок. Этот раздел печатается только в верхней части первой страницы отчета. Используется для вывода данных, таких как текст заголовка отчета, дата или констатирующая часть текста документа, которые следует напечатать один раз в начале отчета. Для добавления или удаления области заголовка отчета необходимо выбрать в меню Вид команду Заголовок/примечание отчета.

Верхний колонтитул. Используется для вывода данных, таких как заголовки столбцов, даты или номера страниц, печатающихся сверху на каждой странице отчета. Для добавления или удаления верхнего колонтитула необходимо выбрать в меню Вид команду Колонтитулы. Microsoft Access добавляет верхний и нижний колонтитулы одновременно. Чтобы скрыть один из колонтитулов, нужно задать для его свойства Высота значение 0.

Область данных, расположенная между верхним и нижним колонтитулами страницы. Содержит основной текст отчета. В этом разделе появляются данные, распечатываемые для каждой из тех записей в таблице или запросе, на которых основан отчет. Для размещения в области данных элементов управления используют список полей и панель элементов. Чтобы скрыть область данных, нужно задать для свойства раздела Высота значение 0.

Нижний колонтитул. Этот раздел появляется в нижней части каждой страницы. Используется для вывода данных, таких как итоговые значения, даты или номера страницы, печатающихся снизу на каждой странице отчета.

Примечание. Используется для вывода данных, таких как текст заключения, общие итоговые значения или подпись, которые следует напечатать один раз в конце отчета. Несмотря на то, что в режиме Конструктора раздел "Примечание" отчета находится внизу отчета, он печатается над нижним колонтитулом страницы на последней странице отчета. Для добавления или удаления области примечаний отчета необходимо выбрать в меню Вид команду Заголовок/примечание отчета. Microsoft Access одновременно добавляет и удаляет области заголовка и примечаний отчета.

Способы создания отчета

В Microsoft Access можно создавать отчеты различными способами:

Конструктор

Мастер отчетов

Автоотчет: в столбец

Автоотчет: ленточный

Мастер диаграмм

Почтовые наклейки


Мастер позволяет создавать отчеты с группировкой записей и представляет собой простейший способ создания отчетов. Он помещает выбранные поля в отчет и предлагает шесть стилей его оформления. После завершения работы Мастера полученный отчет можно доработать в режиме Конструктора. Воспользовавшись функцией Автоотчет, можно быстро создавать отчеты, а затем вносить в них некоторые изменения.

Для создания Автоотчета необходимо выполнить следующие действия:

В окне базы данных щелкнуть на вкладке Отчеты и затем щелкнуть на кнопке Создать. Появится диалоговое окно Новый отчет.

Выделить в списке пункт Автоотчет: в столбец или Автоотчет: ленточный.

В поле источника данных щелкнуть на стрелке и выбрать в качестве источника данных таблицу или запрос.

Щелкнуть на кнопке ОК.

Мастер автоотчета создает автоотчет в столбец или ленточный (по выбору пользователя), и открывает его в режиме Предварительного просмотра, который позволяет увидеть, как будет выглядеть отчет в распечатанном виде.

Изменение масштаба отображения отчета

Для изменения масштаба отображения пользуются указателем - лупой. Чтобы увидеть всю страницу целиком, необходимо щелкнуть в любом месте отчета. На экране отобразится страница отчета в уменьшенном масштабе.

Снова щелкнуть на отчете, чтобы вернуться к увеличенному масштабу отображения. В увеличенном режиме представления отчета, точка, на которой вы щелкнули, окажется в центре экрана. Для пролистывания страниц отчета пользуются кнопками перехода внизу окна.

Печать отчета

Для печати отчета необходимо выполнить следующее:

В меню Файл щелкнуть на команде Печать.

В области Печатать щелкнуть на варианте Страницы.

Чтобы напечатать только первую страницу отчета, введите 1 в поле "с" и 1 в поле "по".

Щелкнуть на кнопке ОК.

Прежде чем печатать отчет, целесообразно просмотреть его в режиме Предварительного просмотра, для перехода к которому в меню Вид нужно выбрать Предварительный просмотр.

Если при печати в конце отчета появляется пустая страница, убедитесь, что параметр Высота для примечаний отчета имеет значение 0. Если при печати пусты промежуточные страницы отчета, убедитесь, что сумма значений ширины формы или отчета и ширины левого и правого полей не превышает ширину листа бумаги, указанную в диалоговом окне Параметры страницы (меню Файл).

При разработке макетов отчета руководствуйтесь следующей формулой: ширина отчета + левое поле + правое поле <= ширина бумаги.

Для того чтобы подогнать размер отчета, необходимо использовать следующие приемы:

изменить значение ширины отчета;

уменьшить ширину полей или изменить ориентацию страницы.

Создание отчета

1. Запустите программу Microsoft Access. Откройте БД (например, учебную базу данных "Деканат").

2. Создайте Автоотчет: ленточный, используя в качестве источника данных таблицу (например, Студенты). Отчет открывается в режиме Предварительного просмотра, который позволяет увидеть, как будет выглядеть отчет в распечатанном виде.

3. Перейдите в режим Конструктора и выполните редактирование и форматирование отчета. Для перехода из режима предварительного просмотра в режим конструктора необходимо щелкнуть команду Закрыть на панели инструментов окна приложения Access. На экране появится отчет в режиме Конструктора.


Редактирование:

1) удалите поля код студента в верхнем колонтитуле и области данных;

2) переместите влево все поля в верхнем колонтитуле и области данных.

3) Измените надпись в заголовке страницы

В разделе Заголовок отчета выделить надпись Студенты.

Поместите указатель мыши справа от слова Студенты, так чтобы указатель принял форму вертикальной черты (курсора ввода), и щелкните в этой позиции.

Введите НТУ "ХПИ" и нажмите Enter.

4) Переместите Надпись. В Нижнем колонтитуле выделить поле =Now () и перетащить его в Заголовок отчета под название Студенты. Дата будет отображаться под заголовком.

5) На панели инструментов Конструктор отчетов щелкнуть на кнопке Предварительный просмотр, чтобы просмотреть отчет.

Форматирование:

1) Выделите заголовок Студенты НТУ "ХПИ"

2) Измените гарнитуру, начертание и цвет шрифта, а также цвет заливки фона.

3) На панели инструментов Конструктор отчетов щелкнуть на кнопке Предварительный просмотр, чтобы просмотреть отчет.

Изменение стиля:

Для изменения стиля выполните следующее:

На панели инструментов Конструктора отчетов щелкнуть на кнопке Автоформат, откроется диалоговое окно Автоформат.

В списке Стили объекта "отчет - автоформат" щелкнуть на пункте Строгий и затем щелкнуть на кнопке ОК. Отчет будет отформатирован в стиле Строгий.

Переключится в режим Предварительный просмотр. Отчет отобразится в выбранном вами стиле. Впредь все отчеты созданные с помощью функции Автоотчет будут иметь стиль Строгий, пока вы не зададите другой стиль в окне Автоформат.

Экспертные и обучающиеся системы

Экспертные системы являются одним из основных приложений искусственного интеллекта. Искусственный интеллект - это один из разделов информатики, в котором рассматриваются задачи аппаратного и программного моделирования тех видов человеческой деятельности, которые считаются интеллектуальными.

Результаты исследований по искусственному интеллекту используются в интеллектуальных системах, которые способны решать творческие задачи, принадлежащие конкретной предметной области, знания о которой хранятся в памяти (базе знаний) системы. Системы искусственного интеллекта ориентированы на решение большого класса задач, к которым относятся так называемые частично структурированные или неструктурированные задачи (слабо формализуемые или неформализуемые задачи).

Информационные системы, используемые для решения частично структурированных задач, подразделяются на два вида:

Создающие управленческие отчеты (выполняющие обработку данных: поиск, сортировку, фильтрацию). Принятие решения осуществляется на основе сведений, содержащихся в этих отчетах.

Экспертные системы являются одним из основных приложений искусственного интеллекта. Искусственный интеллект – это один из разделов информатики, в котором рассматриваются задачи аппаратного и программного моделирования тех видов человеческой деятельности, которые считаются интеллектуальными.

Результаты исследований по искусственному интеллекту используются в интеллектуальных системах, которые способны решать творческие задачи, принадлежащие конкретной предметной области, знания о которой хранятся в памяти (базе знаний) системы. Системы искусственного интеллекта ориентированы на решение большого класса задач, к которым относятся так называемые частично структурированные или неструктурированные задачи (слабо формализуемые или неформализуемые задачи).

Информационные системы, используемые для решения частично структурированных задач, подразделяются на два вида:

    Создающие управленческие отчеты (выполняющие обработку данных: поиск, сортировку, фильтрацию). Принятие решения осуществляется на основе сведений, содержащихся в этих отчетах.

    Разрабатывающие возможные альтернативы решения. Принятие решения сводится к выбору одной из предложенных альтернатив.

Информационные системы, разрабатывающие альтернативы решений, могут быть модельными или экспертными:

    Модельные информационные системы предоставляют пользователю модели (математические, статистические, финансовые и т.д.), которые помогают обеспечить выработку и оценку альтернатив решения.

    Экспертные информационные системы обеспечивают выработку и оценку возможных альтернатив пользователем за счет создания систем, основанных на знаниях, полученных от специалистов - экспертов.

Экспертные системы - это программы для компьютеров, аккумулирующие знания специалистов - экспертов в конкретных предметных областях, которые предназначены для получения приемлемых решений в процессе обработки информации. Экспертные системы трансформируют опыт экспертов в какой-либо конкретной отрасли знаний в форму эвристических правил и предназначены для консультаций менее квалифицированных специалистов.

Известно, что знания существуют в двух видах: коллективный опыт, личный опыт. Если предметная область представлена коллективным опытом (например, высшая математика), то эта предметная область не нуждается в экспертных системах. Если в предметной области большая часть знаний является личным опытом специалистов высокого уровня и эти знания являются слабоструктурированными, то такая область нуждается в экспертных системах. Современные экспертные системы нашли широкое применение во всех сферах экономики.

База знаний является ядром экспертной системы. Переход от данных к знаниям является следствием развития информационных систем. Для хранения данных применяются базы данных, а для хранения знаний – базы знаний. В базе данных, как правило, хранятся большие массивы данных с относительно небольшой стоимостью, а в базах знаний хранятся небольшие по объему, но дорогие информационные массивы.

База знаний – это совокупность знаний, описанных с использованием выбранной формы их представления. Наполнение базы знаний является одной из самых сложных задач, которая связана с выбором знаний их формализацией и интерпретацией.

Экспертная система состоит из:

    базы знаний (в составе рабочей памяти и базы правил), предназначенной для хранения исходных и промежуточных фактов в рабочей памяти (ее еще называют базой данных) и хранения моделей и правил манипулирования моделями в базе правил

    решателя задач (интерпретатора), который обеспечивает реализацию последовательности правил для решения конкретной задачи на основе фактов и правил, хранящейся в базах данных и базах знаний

    подсистемы пояснения, позволяет пользователю получить ответы на вопрос: «Почему система приняла такое решение?»

    подсистемы приобретения знаний, предназначенной как для добавления в базу знаний новых правил, так и модификации имеющихся правил.

    интерфейса пользователя, комплекса программ, реализующих диалог пользователя с системой на стадии ввода информации, и получения результатов.

Экспертные системы отличаются от традиционных систем обработки данных тем, что в них, как правило, используется символьный способ представления, символьный вывод и эвристический поиск решений. Для решения слабо формализуемых или неформализуемых задач более перспективными являются нейронные сети или нейрокомпьютеры.

Основу нейрокомпьютеров составляют нейронные сети – иерархические организованные параллельные соединения адаптивных элементов – нейронов, которые обеспечивают взаимодействие с объектами реального мира так же, как и биологическая нервная система.

Большие успехи использования нейросетей достигнуты при создании самообучающихся экспертных систем. Сеть настраивают, т.е. обучают, пропуская через нее все известные решения и добиваясь получения требуемых ответов на выходе. Настройка состоит в подборе параметров нейронов. Часто используют специализированную программу обучения, которая занимается обучением сети. После обучения система готова к работе.

Если в экспертную систему ее создатели предварительно закладывают знания в определенной форме, то в нейронных сетях неизвестно даже разработчикам, как формируются знания в ее структуре в процессе обучении и самообучении, т.е. сеть представляет собой «черный ящик».

Нейрокомпьютеры, как системы искусственного интеллекта, являются весьма перспективными и могут бесконечно совершенствоваться в своем развитии. В настоящее время системы искусственного интеллекта в форме экспертных систем и нейронных сетей находят широкое применение при решении финансово – экономических проблем.

"
Читайте также:
  1. C2 Покажите на трех примерах наличие многопартийной политической системы в современной России.
  2. II. Системы, развитие которых можно представить с помощью Универсальной Схемы Эволюции
  3. III. Требования к организации системы обращения с медицинскими отходами
  4. MES-системы (Manufacturing Execution System) - системы управления производством (у нас больше известные как АСУТП)
  5. Oсoбеннoсти и прoблемы функциoнирoвaния вaлютнoй системы Республики Белaрусь
  6. А. Оппозиция логичных и нелогичных действий как исходноеотношение социальной системы. Теория действия Парето и теория действия Вебера

Экспертная система – это компьютерная система, использующая знания одного или нескольких экспертов, представленные в некотором формальном виде, а также логику принятия решения человеком-экспертом в трудно- или неформализуемых задачах.

Экспертные системы способны в сложной ситуации (при недостатке времени, информации или опыта) дать квалифицированную консультацию (совет, подсказку), помогающую специалисту (в нашем случае – учителю) принять обоснованное решение. Основная идея этих систем состоит в использовании знаний и опыта специалистов высокой квалификации в данной предметной области специалистам менее высокой квалификации в той же предметной области при решении возникающих перед ними проблем. Отметим, что специалистами высокой квалификации в педагогике принято называть опытных методистов. Обычно экспертные системы создаются в узких предметных областях.

Экспертные системы не заменяют специалиста, а являются его советчиком, интеллектуальным партнером. Серьезным преимуществом экспертной системы является то, что объем информации хранящейся в системе практически не ограничен. Введенные в машину один раз, знания сохраняются навсегда. Человек же имеет ограниченную базу знаний, и если данные долгое время не используются, то они забываются и теряются навсегда. После того как были разработаны первые технологии экспертного оценивания и получены с их помощью первые серьезные результаты, возможности их практического использования сильно преувеличивались. Необходимо правильно понимать реальные возможности их использования. Безусловно, далеко не все существующие проблемы могут быть решены с помощью экспертных оценок. Хотя корректное использование экспертных технологий во многих случаях остается единственным способом подготовки и принятия обоснованных решений.

Экспертные обучающие системы способны имитировать работу человека – эксперта в данной предметной области. Происходит это следующим образом: на этапе создания системы на основе знаний экс­пертов в данной предметной области формируется модель обуча­емого, затем в процессе функционирования системы знания обучаемых диагностируются, фиксируются ошибки и затруднения в ответах. В память компьютера заносятся данные о знаниях, навыках, ошибках, способностях каждого обучаемого. Система проводит анализ результатов учебной деятельности каждого обучаемого, группы или нескольких групп, выявляет наиболее часто встречаемые затруднения и ошибки.



Экспертные системы включает следующие подсистемы : базу знаний, механизм вывода информации, интеллектуальный интерфейс и подсистему пояснений. Рассмотрим эти подсистемы более подробно.

База знаний в данном случае содержит формальное описание знаний экспертов, представленное в виде набора фактов и правил.

Механизм вывода или решатель - это блок, представляющий собой программу, реализующую прямую или обратную цепочку рассуждений в качестве общей стратегии построения вывода. Экспертные обучающие системы можно использовать как средство представления знаний, организации диалога между пользователем и системой, способной по требованию пользователя представить ход рассуждений при решении той или иной учебной задачи в виде, приемлемом для ученика.

С помощью интеллектуального интерфейса экспертная система задает вопросы пользователю и отображает сделанные выводы, представляя их обычно в символьном виде.

К основному преимуществу экспертных систем перед человеком-экспертом можно отнести отсутствие субъективного подхода, которое может быть присуще некоторым экспертам. Проявляется это, прежде всего в возможности использованиясистемы пояснений хода в процессе решения задачи или примера. Технологии экспертного оценивания позволяют генерировать рекомендации ученикам и обобщенные данные педагогам. Данные полученные системой позволят педагогам выявить те разделы, которые обучаемые усвоили слабо, изучить причины недопонимания учебного материала и устранить их.



В сфере обучения подобные системы можно использовать не только для представления учебного материала, но и для контроля знаний, умений, навыков, для сопровождения решения за­дач на уровне репетитора. В этом случае система осуществляет пошаговый контроль правильности хода решения задачи. В случае контроля знаний, умений, навыков система осуществляет диагностику уровня усвоения учебного материала. Ученику предоставляется свобода в выборе темпа работы с системой и траектории обучения.

Выделим основные дидактические требования к экспертным обучающим системам .

1. Учет не только уровня подготовки (низкий, средний, высокий) и уровня усвоения (узнавание, алгоритмический, эвристический, творческий), но и психологических особенностей, личностных предпочтений обучаемого. Например: выбор режима работы, темпа работы, дизайна экрана, вариантов интерактивного взаимодействия.

2. Обеспечение максимальной свободы в выборе ответа на вопросы, а также возможности помощи или подсказки.

3. Реализация возможности получения объяснения целесообразности того или иного решения, получения объяснения действий системы, воспроизведения цепочки правил, используемых системой. Система должна фиксировать и запоминать ошибки в рассуждениях пользователя, чтобы он в любой момент мог вернуться к ним. Ошибки должны быть диагностированы, а помощь пользователю - адекватна этим ошибкам.

Эффективность использования экспертной обучающей системы зависит от следующих факторов .

1. Опыта эксперта или группы экспертов, чьи обобщенные знания и опыт положены в основу работы системы.

2. Технических возможностей средств ИКТ, используемых в учебном процессе.

3. Качества конкретного программного обеспечения.

4. Степени практической реализации персонализированного обучения, основанного на выборе индивидуальных обучающих воздействий.

Под интеллектуальной обучающей системой принято подразумевать комплекс организационно-методического, информационного, математического и программного обеспечения. Однако в это понятие должны быть включены и "человеческие" составляющие данной системы, а именно ученик и учитель. В связи с этим интеллектуальную обучающую систему необходимо рассматривать как сложную человеко-машинную систему, работающую в режиме интерактивного взаимодействия в схеме ученик – система - педагог. Подобные системы принято ориентировать на конкретную предметную область.

Интеллектуальные обучающие системы состоят из двух частей: основной части, включающей учебную информацию (образовательный контент) и вспомогательной части, реализующей интеллектуальное управление ходом учебного процесса.

Структура интеллектуальной обучающей системы:

Основная часть программы состоит из следующих моду­лей: информационного, моделирующего, расчетного, контролирую­щего. Основная часть системы включает в себя разного рода учебную информацию: текст, таблицы, рисунки, анимацию, видеофрагменты. Текст может содержать активные окна, которые позволяют пользователю продвигаться вглубь экрана, перемещаться по произвольной траектории из одного раздела в другой, концентрируя свое внимание на нужной информации, осуществлять произвольный выбор последовательности ознакомления с информацией.

Информационный модуль включает в себя базу данных и базу знаний учебного назначения. База данных содержит учебный, информационный, ин­формационно-справочный материал, список обучаемых, успеваемость и т.п. В процессе создания базы знаний возможно использование всего спектра возможностей технологии мультимедиа, гипермедиа и телекоммуникаций.

В моделирующем модуле содержатся компьютерные модели (имитация работы компьютера, визуализация передачи данных по компьютерным сетям и другое). Компьютерное моделирование позволяет визуализировать разного рода явления и процессы, которые не поддаются непосредственному наблюдению. Работа с компьютерными моделями позволяет существенно сократить время на подготовку и проведение сложных экспериментов, выделить самое важное, организовать интересное научное исследование. Возможность многократного повторения эксперимента позволит обучаемым приобрести навыки анализа результатов эксперимента, сформировать умение обобщать полученные результаты и формулировать выводы.Ученик имеет возможность исследования частных случаев, исходя из общих законов, или, наоборот, в результате изучения частных установить общий закон или закономерность.

Расчетный модуль предназначен для автоматизации различных расчетов.

Контролирующий модуль содержит вопросы, задания, упражнения, предназначенные для контроля знаний обучаемых.

Вспомогательная часть обеспечивает «интеллектуальную» работу системы. Именно здесь заложена схема обучающей последовательности, механизмы адаптации системы к конкретному объекту обучения, средства интеллектуального анализа объема и структуры знаний, необходимых для организации и управления учебным процессом. Помимо этого в вспомогательную часть входит подсистема интеллектуального управления ходом учебного процесса, реализующая интерактивный диалог пользователя с системой; контрольно-диагностирующий модуль, позволяющий рассчитать и оценить параметры субъекта обучения для определения обучающих воздействий, оптимальной стратегии и тактики обучения на каждом этапе занятия; осуществляющая экспертизу уровня знаний, умений, навыков, правильности решения разного рода задач, статистическую обработку результатов контроля, диагностику ошибок. Управляющая реакция системы, как правило, обуславливается ответами ученика на контрольные вопросы. Естественным требованием здесь является минимизация расхождения ответа ученика с передаваемой ему информацией. Система осуществляет контроль за прохождением обучаемыми этапов занятия и выводит эту информацию на компьютер учителя.

Преподаватель работает в тесном контакте с системой, получает от нее информацию о ходе процесса обучения, посылает запросы и вводит изменения в программу. Внесение изменений возможно только в том случае, если система является открытой, тогда в ней должен присутствовать сервисный модуль. Именно этот модуль позволяет учителю вносить в систему необходимые изменения и дополнения. Каждый из модулей является автономным, поэтому при внесении изменений в один из модулей со­держание остальных модулей основной части не изменяется.

Интеллектуальная обучающая система может быть использования не только на уроках, но и во время самостоятельной работы обучаемых, в процессе научно-исследовательской деятельности. Следует отметить, что системам искусственного интеллекта свойственны те же недостатки, что и экспертным обучающим системам, связанные с трудностью практической реализации системой индивидуализации и дифференциации обучения в том виде, который характерен для индивидуального обучения педагогом конкретного обучаемого. Такое положение вызвано тем, что искусственный интеллект лишь отдаленно напоминает некоторые человеческие качества и ни в коей мере не может отождествляться с интеллектом человека.

Выделим основные преимущества использования интеллектуальной обучающей системы на уроке .

Учитель : полу­чает достоверные данные о результатах учебной деятельности каждого отдельного ученика и класса в целом. Достоверность же определяется тем, что система фиксирует ошибки и затруднения в ответах ученика, выявляет наиболее часто встречаемые затруднения и ошибки, констатирует причины ошибочных действий обучаемого и посылает на его компьютер соответствующие комментарии и рекомендации; анализирует действия ученика, реализует широкий спектр обучающих воздействий, генерирует задания в зависимости от интеллектуального уровня конкретного обучаемого, уровня его знаний, умений, навыков, особенностей его мотивации, осуществляет управление рассылкой заданий и т.д.

Ученик получает в лице подобной системы не просто учителя, а персонального помощника в изучении конкретной дисциплины.

Эффективность работы интеллектуальных обучающих систем зависит от соблюдения ряда условий :

Возможности накопления и применения знаний о результа­тах обучения каждого обучаемого для выбора индивидуальных обучающих воздействий и управления процессом обучения для фор­мирования комплексных знаний и умений;

Валидности критериев оценки уровня знаний, умений, навыков; уровня подготовки (низкий, средний, высокий) или уровня усвоения материала (узнавание, алгоритмический, эвристический, творческий);

Возможности адаптации системы к изменению состояния обучаемого (обучаемый относился к среднему уровню, но на данном занятии его знания приближаются к высокому или, наоборот, к низкому уровню).

Внедрение в учебный процесс интеллектуальных обучающих систем позволит усилить эмоциональное восприятие учебной ин­формации; повысить мотивацию обучения за счет возможности само­контроля, индивидуального, дифференцированного подхода к каж­дому обучаемому; развить процессы познавательной деятель­ности; проводить поиск и анализ разнообразной ин­формации; создать условия для формирования умений самостоятельного приобретения знаний.

Экспертная обучающая система


Введение

В настоящее время в связи с бурным развитием интернет-технологий появляются все новые интерактивные сервисы для Internet и Intranet -сетей, как например, дистанционное обучение. Система дистанционного обучения является достаточно популярной формой образования в мире в тех странах, в которых достаточно высокий уровень развития средств коммуникации на базе вычислительной техники. Подготовка современных специалистов требует организации учебного процесса с использованием этих новых информационных технологий и с применением систем, основанных на знаниях - экспертных систем (ЭС).

Применение ЭС для оценки уровня знаний обучаемых в системах тестирования определяет важный блок компьютерных программ - экспертно-обучающие системы (ЭОС).

Экспертно-обучающие системы - это компьютерные программы, имеющие основные компоненты ЭС, но у которых дополнительно расширена компонента объяснения. Такие системы основываются как на знаниях экспертов ПО, так и на знаниях экспертов по методике обучения. Кроме того, они имеют компоненту адаптации изложения учебного материала к обучаемому в зависимости от его подготовленности. И как минимум имеется несколько стратегией обучения, уровень детализации которых зависит от активности обучаемого в диалоге с системой .

Использование ЭОС в качестве тестирующего средства для определения качества знаний ученика, студента также имеет огромное значение в обучении. Поскольку при таком тестировании на ученика не воздействует субъективный фактор, то есть итоги тестирования не зависят от личностных особенностей экзаменатора и тестируемого. А учителю использование единых тестов позволяет объективно оценить уровень подготовки учеников.

1. Актуальность темы

В связи с широким распространением использования компьютеров возрастает роль компьютерного обучения, методика которого повышает интеллектуальные способности обучаемого и самостоятельность принятия решения. А такие качества наиболее востребованы в условиях конкурентоспособной экономики и способствуют образовательно- профессиональному росту. Имеются проблемы создания эффективных систем обучения, также как и создание новых форм и способов представления учебного материала, поиска новых педагогических приемов и средств преподавания . Одним из направлений повышения эффективности обучения, усвоения информации и сокращения затрат на сам процесс обучения является разработка и использование автоматизированных экспертных обучающих систем. В данное время есть множество терминов, обозначающих автоматизированную экспертную обучающую систему, которые, по сути, являются аналогичными .

Самые популярными из них являются системы дистанционного обучения, компьютерная обучающая система и другие. Для объяснения всего смысла перечисленных выше терминов можно привести следующее определение.
Экспертно обучающая система (ЭОС) - это комплекс программно-технических и учебно-методических средств, построенных на основе знаний экспертов предметной области (квалифицированных преподавателей, методистов, психологов), осуществляющая и контролирующая процесс обучения. Назначение такой системы состоит в том, что она, с одной стороны помогает преподавателю обучать и контролировать учащегося, а сдругой стороны учащемуся самостоятельно обучаться .

2. Цель и задачи исследования, планируемые результаты

Целью исследования является разработка компьютерной экспертной обучающей системы, которая поможет повысить количество усвоенных знаний и эффективность восприятия информации, а также сократить время на изучение предмета, в том числе и время, затраченное преподавателем на представление информации и привитие практических навыков у студентов.

Основные задачи исследования:

  1. Разработка онтологической модели ЭОС;
  2. Разработка структуры ЭОС;
  3. Обоснование и выбор компьютерных средств реализации;
  4. Внедрение активных компонент в ЭОС (игры, интерактивные системы, прямой доступ к общению, например, через Skype с руководителем);

Объект исследования : экспертно обучающая система.

Предмет исследования : модели, структуры и функции ЭОС.

Научная новизна состоит в новом подходе к проектированию ЭОС, основанном на моделировании деятельности обучаемого и применении методов искусственного интеллекта.

В рамках магистерской работы планируется получение актуальныхнаучных результатов по следующим направлениям:

  1. Моделирования процессов обучения.
  2. Проектирования структуры ЭОС для Internet и Intranet .

Планируемыми результатами работы: прототип экспертной обучающей системы, которая позволит улучшить качество обучения и сократить время обучения.

3. Обзор научных исследований.

Поскольку вопросы исследования экспертных обучающих систем и повышения эффективности обучения в этой системе являются важной частью решения сложных задач с помощью экспертных систем. ЭОС были широко исследованы как зарубежными, так и отечественными специалистами.

3.1. Обзор международных источников

Первая обучающая система Plato на основе мощной ЭВМ фирмы « Control Data Corporation » была разработана в США в конце 50-х годов и развивалась в течение 20 лет. По-настоящему массовыми создание и использование обучающих программ стали с начала 80-х годов, когда появились и получили широкое распространение персональные компьютеры. С тех пор образовательные применения ЭВМ выдвинулись в число их основных применений наряду с обработкой текстов и графики, оттеснив на второй план математические расчеты.

Также была основана в 1972 году компания ECSI и с тех пор зарекомендовала себя как ведущего поставщика услуг для образовательной отрасли.Компания специализируется на разработке продуктов и услуг для повышения опыта обучения для учащихся и их родителей.ECSI в настоящее время обслуживает более 1300 школ, колледжей и университетов по всей стране, предлагая широкий спектр полностью настроенных, интуитивно понятных систем обучения .

3.2. Обзор национальных источников

К современным обучающим системам относятся системы TrainingWare, eLearning Server 3000 v2.0, eLearningOffice 3000, IBM Workplace Collaborative Learning и HyperMethod 3.5 компании ГиперМетод, которая является крупнейшим российским разработчиком готовых решений и программного обеспечения в области мультимедиа, экспертного обучения и электронной коммерции .

4. Экспертные обучающие системы

Экспертная обучающая система (ЭОС) - это компьютерная программа, построенная на основе знаний экспертов предметной области (квалифицированных преподавателей, методистов, психологов), осуществляющая и контролирующая процесс обучения. Назначение такой системы состоит в том, что она, с одной стороны помогает преподавателю обучать и контролировать учащегося, а с другой - учащемуся самостоятельно обучаться .

Основными компонентами ЭОС являются:

  1. база знаний;
  2. машина вывода;
  3. модуль извлечение знаний;
  4. модуль обучения;
  5. система объяснения;
  6. модуль тестирования.

Рисунок 1 - Функциональная модель структуры ЭОС

(анимация: 8 кадров, 5 циклов повторения, 118 килобайт)

В этой модели верхняя часть ЭОС унаследована от ЭС, а нижняя представляет собой блоки, обеспечивающие процесс обучения и тестирования.

База знаний - это депозитарий модулей знаний. Модуль знания экспертных систем представляет собой формализованное, с помощью некоторого метода представления знаний (система продукций, фреймы, семантические сети, исчисления предикатов 1-го порядка) отображение объектов предметной области, их взаимосвязей, действий над объектами.

Работа с базой знаний предполагает следующие стадии:

  1. извлечение знаний из экспертов;
  2. формализация знаний;
  3. доступ, обработка модулей знаний.

В процессе обучения знания экспертов могут быть переданы обучаемому в виде порции информации (текстовой, графической, мультимедийной), а также знания, основанные на опыте, которые не могут быть переданы непосредственно обучаемому, а приобретаются им в ходе самостоятельной деятельности ].

Для передачи знаний экспертов широко используют развитую технологию гипертекста - от традиционных программ по созданию помощи (help) до современных инструментов создания и поддержки Web-сайтов (например Dreamweaver MX).

В отличие от ЭС для построения базы знаний ЭОС привлекаются не только эксперты-преподаватели, но и используются знания о педагогических приемах и стратегиях обучения и о психологических особенностях личности. Поэтому модули знания формируются многими экспертами. И здесь следует учитывать согласованность мнений экспертов и производить тонкую настройку базы знаний, учитывающую компетентность экспертов. Конечно, эти трудности можно обойти, если имеется эксперт, который сочетает в себе знания специалиста по предметной области, знания о тактике и стратегии обучения и владеющий психологическими приемами обучения, то есть высоко квалифицированный преподаватель.

Компонент обучения представляет собой комплекс программных модулей, реализующих различные механизмы вывода для достижения педагогической цели в обучении. ЭОС в отличие от других компьютерных средств обучения обладают интерактивностью: имеют диалог с обучаемым, что очень привлекательно для последнего .

Построение диалога строится на основных психологических принципах обучения:

  1. дружественный интерфейс;
  2. выход из диалога в любой момент;
  3. своевременная и мотивированная помощь.

Каждый вопрос, задаваемый обучаемому, необходимо тщательно продумать, при необходимости предусмотреть более развернутый вопрос с целью лучшего понимания его.

В результате исследования было показано что многие компоненты создания ЭОС зависят от результата обучения, поэтому для создания базы знаний ЭС необходим специалист который имеет отличные знания по предметной области, а также уверено владеет приемами обучения .

5. Клиент-серверная технология экспертной обучающей системы для сетей Internet и Intranet

Архитектура клиент-сервер состоит из следующих компонентов:

сервер, выполняющий запросы клиента; клиент, предоставляющий интерфейс пользователя, посылающий запросы к серверу и получающий ответы от него; сетевое коммуникационное программное обеспечение, осуществляющее взаимодействие между клиентом и сервером. Использование клиент-серверной технологии дает определенные преимущества при построении ЭС: база знаний хранится на сервере и, следовательно, необходимость ее обновления производится однократно;
база знаний может быть доступна другим приложениям; а преимущество для экспертно-обучающих систем (ЭОС) заключается еще в том, что можно хранить контент на сервере и на нем отслеживать статистику обучения.
Клиент-серверные ЭС и ЭОС для сетей Internet/Intranet позволяют расширить возможности их применения в дистанционном образовании.
Компьютерные обучающие системы позволяют, как разрабатывать прототипы ЭС, так и может быть использована для адаптированного тестирования и обучения студентов по локальной сети.
Основными компонентами ЭОС являются следующие: редактор БЗ; машины логического вывода (прямой, обратный, косвенный вывод, формула Байеса); подсистема объяснения; анализатор теста; модуль преподавателя; компонента обучения .

Основная задача экспертных обучающих систем - это предоставления возможности приобретения студентом знаний, умений, навыков по разработке БЗ и созданию прототипов ЭС самостоятельно, а также для обучаемого тестирования.

Имеется по крайне мере пять важных причин, которые препятствуют реализации клиент-серверных (распределенных) ЭС:

  1. Конструктивные элементы компонент ЭС не обособленны друг от друга.
  2. БЗ - это не база данных, для которых существуют мощные СУБД (Oracle, InterBase, MySQL и так далее) использующие SQL запросы.
  3. Многопользовательский доступ к БЗ для редактирования просто не допустим.
  4. Логический вывод и специфика создания БЗ (различные способы представления знаний) не способствует необходимости объединения их в единую систему. Для Symantec Web разработан ряд языков описаний, Web-сервисов, но до сих пор нет никаких предложений по реализации логического вывода.
  5. Программное обеспечение инструментальных средств для построения ЭС и БЗ является эксклюзивным и дорогостоящим.

Можно, конечно, разместить ЭС на Web-сервере для загрузке на клиентскую машину по ссылке download и обновлять ее на сервере, но это не клиент-серверное решение .

Аналогично, можно утверждать и об использовании трехзвенной архитектуры клиент-сервер (Сервер - CORBA - Клиент), когда БЗ размещается на сервере приложений и представляется в виде правил бизнес - решений.

Также не подходит технологии "тонкого клиента" (БЗ, логический вывод, система объяснения располагаются на сервере, а диалог с ЭС поддерживается как на сервере, так и на клиенте) и "толстого клиента" (БЗ, логический вывод, система объяснения располагаются на клиентской машине, а диалоговый интерфейс поддерживается клиентом и сервером).

Заметим, что БЗ ЭС является интеллектуальной собственностью и не может быть доступна для свободного использования. А учебные БЗ следует размещать на Web-сервере, чтобы любой интересующий пользователь могут проанализировать, как работает ЭС и усовершенствовать свои знания о предметной области.

Не следует забывать о нагрузках на сервер в пиковых ситуациях. Ни один провайдер не отдаст сервер только для функционирования ЭС, поскольку реакция пользователя при консультации или объяснении не предсказуема. А это важные моменты функционирования ЭС (консультации могут длиться от минут до несколько часов) .

Совсем другое дело разработка ЭОС для сетей Internet/Intranet.

ЭОС - это компьютерная система, построенная на основе знаний экспертов предметной области (квалифицированных преподавателей, методистов, психологов), осуществляющая и контролирующая процесс обучения. Назначение такой системы состоит в том, что она, с одной стороны помогает преподавателю обучать и контролировать студентов, а с другой - студентам самостоятельно обучаться.

Основными компонентами ЭОС являются следующие: БЗ; машина вывода; модуль обучения; система объяснения; модуль обучаемое тестирование.

Как правило, БЗ содержит:

Психодиагностические правила для идентификации психологических типов обучаемых.

Дидактические приемы для обучения. Правила представляют собой накопленные знания преподавателей по оценки знаний обучаемых.

Правила обучения изменяют последовательность предъявляемых заданий контента. Эта последовательность является функцией многих переменных: психологический тип обучаемого, уровень обучения, текущий ответ обучаемого, уровень сложности задания, количество прохождения обучения.

В связи с изложенным по поводу распределенных ЭС, для обучения и тестирования рекомендуется использовать технологию "толстого клиента", то есть, когда все компоненты ЭОС находятся на клиентской машине, а на сервер передаются результаты обучения и тестирования. И не надо опасаться зато, что результаты могут быть заменены, учитывая современные возможности шифрования протокола с удаленным сервером. Почему именно такая технология? Известно, что порядка 80% всей воспринимаемой человеком информации - это зрительная. Поэтому мультимедийные технологии (avi-файлы) являются приоритетными при обучении. Если их располагать и запускать на сервере - это огромная нагрузка на сервер и как, следствие, возрастает трафик до огромных размеров .

Выводы

ЭОС в отличие от других компьютерных технологий обучения имеют возможность реализовать процесс обучения по индивидуальной модели обучаемого. Обучение с помощью ЭС ориентировано на извлечение знаний самим обучаемым. А именно такие специалисты востребованы на современном рынке труда. Также ЭОС имеет свои достоинства и недостатки.

Основные недостатки, связанные с экспертными обучающими системами, можно разделить напсихологические , связанные с отсутствием «живого» общения с преподавателем, высокими требованиями к самоорганизации итехнические , которые обусловлены несовершенством контента, технологий и телекоммуникационной инфраструктуры.

Достоинства экспертных обучающих систем являются:

  1. Географические и временные преимущества.
  2. Персонализация процесса обучения. Возможность обучения различных категорий людей, в том числе с ограниченными способностями.
  3. Расширение изучаемой информации и повышение интенсивности обучения.
  4. Оптимизация и автоматизация процесса передачи знаний.

Магистерская работа посвящена актуальной научной задаче автоматизации экспертной обучающей системы. В рамках проведенных исследований выполнено:

  1. Проанализированы существующие экспертные обучающие системы.
  2. Было произведено исследование автоматизированной экспертной обучающей системы.
  3. Рассмотрена Клиент-серверная технология экспертной обучающей системы для сетей Internet и Intranet.

В соответствии с постановкой задачи, дальнейшим направлением исследования является выбор, разработка и адаптация экспертной обучающей системы, ее программная реализация и тестирование.

При написании данного реферата магистерская работа еще не завершена. Окончательное завершение: декабрь 2013 года. Полный текст работы и материалы по теме могут быть получены у автора или его руководителя после указанной даты.

Список источников

1. Брукинг А. Экспертные системы. Принципы работы и примеры.: Пер. с англ. / А. Брукинг, П. Джонс; [ Под ред. Р. Форсайта. - М.: Радио и связь, 1987. - 224 с.

2. - Американська асоціація штучного інтелекту American Association for Artificial Intelligence (AAAI).

7. Карпова И.П. Анализ ответов обучаемого в автоматизированных обучающих системах / И.П. Карпова // - Информационные технологии, 2001, № 11. - с.49-55.

8. Pusilovsky, P., Adaptive and Intelligent Technologies for Web-based Education. In C. Rollinger and C. Peylo (eds.), Special Issue on Intelligent Systems and Teleteaching, Konstliche Intelligenz, 4, 19 - 25.

9. Бурдаев В.П. Клиент-серверная технология экспертной обучающей системы для сетей Интернет и Интранет. // Искусственный интеллект.

11. Андрейчиков А. В. Интеллектуальные информационные системы. /А. В. Андрейчиков, О. Н. Андрейчикова.: Учебник. - М.:Финансы и статитстика, 2004. - 424 с.

12. Атанов Г. А. Обучение и искусственный интеллект, или основы современной дидактики высшей школы. /Г. А. Атанов, И. Н. Пустынникова. - Донецк: ДОУ, 2002. - 504 с.

13. Marvin Minsky. The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind. 2007. - 332 с.

Загрузка...
Top