Федеральное агентство по образованию рф. Джилавдари И.З. Физические основы измерений Альтернатива к дисциплине физические основы измерений

Минск: БНТУ, 2003. — 116 с.Введение.
Классификация физических величин.
Размер физических величин. Истинное значение физических величин.
Основной постулат и аксиома теории измерений.
Теоретические модели материальных объектов, явлений и процессов.
Физические модели.
Математические модели.
Погрешности теоретических моделей.
Общая характеристика понятия измерение (сведения из метрологии).
Классификация измерений.
Измерение как физический процесс.
Методы измерений как методы сравнения с мерой.
Методы прямого сравнения.
Метод непосредственной оценки.
Метод прямого преобразования.
Метод замещения.
Методы масштабного преобразования.
Метод шунтирования.
Метод следящего уравновешивания.
Мостовой метод.
Разностный метод.
Нулевые методы.
Метод развёртывающей компенсации.
Измерительные преобразования физических величин.
Классификация измерительных преобразователей.
Статические характеристики и статические погрешности СИ.
Характеристики воздействия (влияния) окружающей среды и объектов на СИ.
Полосы и интервалы неопределённости чувствительности СИ.
СИ с аддитивной погрешностью (погрешность нуля).
СИ с мультипликативной погрешностью.
СИ с аддитивной и мультипликативной погрешностями.
Измерение больших величин.
Формулы статических погрешностей средств измерений.
Полный и рабочий диапазоны средств измерений.
Динамические погрешности средств измерений.
Динамическая погрешность интегрирующего звена.
Причины аддитивных погрешностей СИ.
Влияние сухого трения на подвижные элементы СИ.
Конструкция СИ.
Контактная разность потенциалов и термоэлектричество.
Контактная разность потенциалов.
Термоэлектрический ток.
Помехи, возникающие из-за плохого заземления.
Причины мультипликативных погрешностей СИ.
Старение и нестабильность параметров СИ.
Нелинейность функции преобразования.
Геометрическая нелинейность.
Физическая нелинейность.
Токи утечки.
Меры активной и пассивной защиты.
Физика случайных процессов, определяющих минимальную погрешность измерений.
Возможности органов зрения человека.
Естественные пределы измерений.
Соотношения неопределенности Гейзенберга.
Естественная спектральная ширина линий излучения.
Абсолютная граница точности измерения интенсивности и фазы электромагнитных сигналов.
Фотонный шум когерентного излучения.
Эквивалентная шумовая температура излучения.
Электрические помехи, флуктуации и шумы.
Физика внутренних неравновесных электрических шумов.
Дробовой шум.
Шум генерации - рекомбинации.
1/f-шум и его универсальность.
Импульсный шум.
Физика внутренних равновесных шумов.
Статистическая модель тепловых флуктуаций в равновесных системах.
Математическая модель флуктуаций.
Простейшая физическая модель равновесных флуктуаций.
Основная формула расчета дисперсии флуктуации.
Влияние флуктуаций на порог чувствительности приборов.
Примеры расчета тепловых флуктуаций механических величин.
Скорость свободного тела.
Колебания математического маятника.
Повороты упруго подвешенного зеркальца.
Смещения пружинных весов.
Тепловые флуктуации в электрическом колебательном контуре.
Корреляционная функция и спектральная плотность мощности шума.
Флуктуационно-диссипационная теорема.
Формулы Найквиста.
Спектральная плотность флуктуации напряжения и тока в колебательном контуре.
Эквивалентная температура нетепловых шумов.
Внешние электромагнитные шумы и помехи и методы их уменьшения.
Емкостная связь (емкостная наводка помехи).
Индуктивная связь (индуктивная наводка помехи).
Экранирование проводников от магнитных полей.
Особенности проводящего экрана без тока.
Особенности проводящего экрана с током.
Магнитная связь между экрана с током и заключенным в него проводником.
Использование проводящего экрана с током в качестве сигнального проводника.
Защита пространства от излучения проводника с током.
Анализ различных схем защиты сигнальной цепи путем экранирования.
Сравнение коаксиального кабеля и экранированной витой пары.
Особенности экрана в виде оплетки.
Влияние неоднородности тока в экране.
Избирательное экранирование.
Подавление шумов в сигнальной цепи методом ее симметрирования.
Дополнительные методы шумоподавления.
Развязка по питанию.
Развязывающие фильтры.
Защита от излучения высокочастотных шумящих элементов и схем.
Шумы цифровых схем.
Выводы.
Применение экранов из тонколистовых металлов.
Ближнее и дальнее электромагнитное поле.
Эффективность экранирования.
Полное характеристическое сопротивление и сопротивление экрана.
Потери на поглощение.
Потери на отражение.
Суммарные потери на поглощение и отражение для магнитного поля.
Влияние отверстий на эффективность экранирования.
Влияние щелей и отверстий.
Использование волновода на частоте ниже частоты среза.
Влияние круглых отверстий.
Использование проводящих прокладок для уменьшения излучения в зазорах.
Выводы.
Шумовые характеристики контактов и их защита.
Тлеющий разряд.
Дуговой разряд.
Сравнение цепей переменного и постоянного тока.
Материал контактов.
Индуктивные нагрузки.
Принципы защиты контактов.
Подавление переходных процессов при индуктивных нагрузках.
Цепи защиты контактов при индуктивных нагрузках.
Цепь с емкостью.
Цепь с емкостью и резистором.
Цепь с емкостью, резистором и диодом.
Защита контактов при резистивной нагрузке.
Рекомендации по выбору цепей защиты контактов.
Паспортные данные на контакты.
Выводы.
Общие методы повышения точности измерений.
Метод согласования измерительных преобразователей.
Идеальный генератор тока и идеальный генератор напряжения.
Согласование сопротивлений генераторных ИП.
Согласование сопротивлений параметрических преобразователей.
Принципиальное различие информационных и энергетических цепей.
Использование согласующих трансформаторов.
Метод отрицательной обратной связи.
Метод уменьшения ширины полосы пропускания.
Эквивалентная полоса частот пропускания шумов.
Метод усреднения (накопления) сигнала.
Метод фильтрации сигнала и шума.
Проблемы создания оптимального фильтра.
Метод переноса спектра полезного сигнала.
Метод фазового детектирования.
Метод синхронного детектирования.
Погрешность интегрирования шумов с помощью RC - цепочки.
Метод модуляции коэффициента преобразования СИ.
Применение модуляции сигнала для увеличения его помехозащищенности.
Метод дифференциального включения двух ИП.
Метод коррекции элементов СИ.
Методы уменьшения влияния окружающей среды и условий изменения.
Организация измерений.

Контрольная работа

Дисциплина: "Электрические измерения"


Введение1. Измерение сопротивления электрической цепи и изоляции2. Измерение активной и реактивной мощности3. Измерение магнитных величинСписок литературы
Введение Задачи магнитных измерений.Область электроизмерительной техники,которая занимается измерениями магнитных величин,обычно называют магнитными измерениями.С помощью методов и аппаратуры магнитных измерений решаются в настоящее время самые разнообразные задачи. В качестве основных из них можно назвать следующие: измерение магнитных величин (магнитной индукции, магнитного потока, магнитного момента и т. д.); определение характеристик магнитных материалов; исследование электромагнитных механизмов;измерение магнитного поля Земли и других планет;изучение физико-химических свойств материалов (магнитный анализ);исследование магнитных свойств атома и атомного ядра;определение дефектов в материалах и изделиях (магнитная дефектоскопия) и т. д.Несмотря на разнообразие задач, решаемых с помощью магнитных измерений,определяются обычно всего несколько основных магнитных величин: Причем во многих способах измерения магнитных величин фактически измеряется не магнитная,а электрическая величина, в которую магнитная величина преобразуется в процессе измерения. Интересующая нас магнитная величина определяется расчетным путем на основании известных зависимостей между магнитными и электрическими величинами. Теоретической основой подобных методов является второе уравнение Максвелла,связывающее магнитное поле с полем электрическим; эти поля являются двумя проявлениями особого вида материи,именуемого электромагнитным полем.Используются в магнитных измерениях и другие (не только электрические)проявления магнитного поля, например механические, оптические.Настоящая глава знакомит читателя лишь с некоторыми способами определения ее основных магнитных величин и характеристик магнитных материалов.

1. Измерение сопротивления электрической цепи и изоляции

Средства измерений

К средствам измерения изоляции относятся мегомметры: ЭСО 202, Ф4100, М4100/1-М4100/5, М4107/1, М4107/2, Ф4101. Ф4102/1, Ф4102/2, BM200/G и другие, выпускаемые отечественными и зарубежными фирмами. Сопротивление изоляции измеряют мегомметрами (100-2500В) со значениями измеренных показателей в Ом, кОм и МОм.

1. К выполнению измерений сопротивления изоляции допускается обученный электротехнический персонал, имеющий удостоверение о проверке знаний и квалификационную группу по электробезопасности не ниже 3-й, при выполнении измерений в установках до 1000 В, и не ниже 4-й, при измерении в установках выше 1000 В.

2. К обработке результатов измерений могут быть допущены лица из электротехнического персонала со средним или высшим специальным образованием.

3. Анализ результатов измерений должен проводить персонал, занимающийся вопросами изоляции электрооборудования, кабелей и проводов.

Требования безопасности

1. При выполнении измерений сопротивления изоляции должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019.80, ГОСТ 12.2.007-75, Правилами эксплуатации электроустановок потребителей и Правилами техники безопасности при эксплуатации электроустановок потребителей.

2. Помещения, используемые для измерения изоляции, должны удовлетворять требованиям взрыво- и пожарной безопасности по ГОСТ 12.01.004-91.

3. Средства измерений должны удовлетворять требованиям безопасности по ГОСТ 2226182.

4. Измерения мегомметром разрешается выполнять обученным лицам из электротехнического персонала. В установках напряжением выше 1000 В измерения производят по наряду два лица, одно из которых должно иметь по электробезопасности не ниже IV группы. Проведение измерений в процессе монтажа или ремонта оговаривается в наряде в строке "Поручается". В установках напряжением до 1000 В измерения выполняют по распоряжению два лица, одно из которых должно иметь группу не ниже III. Исключение составляют испытания, указанные в п. БЗ.7.20.

5. Измерение изоляции линии, могущей получить напряжение с двух сторон, разрешается проводить только в том случае, если от ответственного лица электроустановки, которая присоединена к другому концу этой линии, получено сообщение по телефону, с нарочным и т.п. (с обратной проверкой) о том, что линейные разъединители и выключатель отключены и вывешен плакат "Не включать. Работают люди".

6. Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану.

7. Для контроля состояния изоляции электрических машин в соответствии с методическими указаниями или программами измерения мегомметром на остановленной или вращающейся, но не возбужденной машине, могут проводиться оперативным персоналом или, по его распоряжению, в порядке текущей эксплуатации работниками электролаборатории. Под наблюдением оперативного персонала эти измерения могут выполняться и ремонтным персоналом. Испытания изоляции роторов, якорей и цепей возбуждения может проводить одно лицо с группой по электробезопасности не ниже III, испытания изоляции статора - не менее чем два лица, одно из которых должно иметь группу не ниже IV, а второе - не ниже III.

8. При работе с мегомметром прикасаться к токоведущим частям, к которым он присоединен, запрещается. После окончания работы необходимо снять остаточный заряд с проверяемого оборудования посредством его кратковременного заземления. Лицо, производящее снятие остаточного заряда, должно пользоваться диэлектрическими перчатками и стоять на изолированном основании.

9. Производство измерений мегомметром запрещается: на одной цепи двухцепных линий напряжением выше 1000 В, в то время когда другая цепь находится под напряжением; на одноцепной линии, если она идет параллельно с работающей линией напряжением выше 1000 В; во время грозы или при ее приближении.

10. Измерение сопротивления изоляции мегомметром осуществляется на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегомметра. При снятии заземления необходимо пользоваться диэлектрическими перчатками.

Условия выполнения измерений

1. Измерения изоляции должны проводиться в нормальных климатических условиях по ГОСТ 15150-85 и при нормальном режиме питающей сети или оговоренных в заводском паспорте - техническом описании на мегомметры.

2. Значение электрического сопротивления изоляции соединительных проводов измерительной схемы должно превышать не менее чем в 20 раз минимально допускаемое значение электрического сопротивления изоляции испытуемого изделия.

3. Измерение проводят в помещениях при температуре 25±10 °С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шнуры и оборудование не предусмотрены другие условия.

Подготовка к выполнению измерений

При подготовке к выполнению измерений сопротивления изоляции проводят следующие операции:

1. Проверяют климатические условия в месте измерения сопротивления изоляции с измерением температуры и влажности и соответствие помещения по взрыво- пожароопасности для подбора, к соответствующим условиям, мегомметра.

2. Проверяют по внешнему осмотру состояние выбираемого мегомметра, соединительных проводников, работоспособность мегаомметра согласно техническому описанию на мегомметр.

3. Проверяют срок действия госповерки на мегомметр.

4. Подготовку измерений образцов кабелей и проводов выполняют согласно ГОСТ 3345-76.

5. При выполнении периодических профилактических работ в электроустановках, а также при выполнении работ на реконструируемых объектах в электроустановках подготовку рабочего места выполняет электротехнический персонал предприятия, где выполняется работа согласно правилам ПТБЭЭП и ПЭЭП.

Выполнение измерений

1. Отсчет значений электрического сопротивления изоляции при измерении проводят по истечении 1 мин с момента приложения измерительного напряжения к образцу, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования.

Перед повторным измерением все металлические элементы кабельного изделия должны быть заземлены не менее чем за 2 мин.

2. Электрическое сопротивление изоляции отдельных жил одножильных кабелей, проводов и шнуров должно быть измерено:

для изделий без металлической оболочки, экрана и брони - между токопроводящей жилой и металлическим стержнем или между жилой и заземлением;

для изделий с металлической оболочкой, экраном и броней - между токопроводящей жилой и металлической оболочкой или экраном, или броней.

3. Электрическое сопротивление изоляции многожильных кабелей, проводов и шнуров должно быть измерено:

для изделий без металлической оболочки, экрана и брони - между каждой токопроводящей жилой и остальными жилами, соединенными между собой или между каждой токопроводящей; жилой и остальными жилами, соединенными между собой и заземлением;

для изделий с металлической оболочкой, экраном и броней - между каждой токопроводящей жилой и остальными жилами, соединенными между собой и с металлической оболочкой или экраном, или броней.

4. При пониженном сопротивлении изоляции кабелей проводов и шнуров, отличной от нормативных правил ПУЭ, ПЭЭП, ГОСТ, необходимо выполнить повторные измерения с отсоединением кабелей, проводов и шнуров от зажимов потребителей и разведением токоведущих жил.

5. При измерении сопротивления изоляции отдельных образцов кабелей, проводов и шнуров, они должны быть отобраны на строительные длины, намотанные на барабаны или в бухты, или образцы длиной не менее 10 м, исключая длину концевых разделок, если в стандартах или технических условиях на кабели, провода и шнуры не оговорена другая длина. Число строительных длин и образцов для измерения должно быть указано в стандартах или технических условиях на кабели, провода и шнуры.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

МИНИСТРЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«Восточно-Сибирский государственный университет технологий и управления»

Кафедра: ИПИБ

«Физические основы измерений и эталон»

Выполнила: ст-ка 3-го курса

Елисеева Ю.Г.

Проверил: Матуев А.А.

Введение

1. Физические основы измерений

2. Измерение. Основные понятия

3. Неопределенность и погрешность измерений

4. Основные принципы создания системы единиц, величин

5. Международная система единиц, Си

6. Реализация основных величин системы (Си)

7. Метрологические характеристики СИ

8. Принципы, методы и методики измерений

Заключение

Биографический список

Введение

Технический прогресс, современное развитие промышленности, энергетики и других отраслей невозможны без совершенствования традиционных и создания новых методов и средств измерений (СИ). В рабочую программу «Физические измерения и эталоны» включено рассмотрение фундаментальных физических понятий, явлений и закономерностей, используемых в метрологии и измерительной технике. С развитием науки, техники и новых технологий измерения охватывают новые физические величины (ФВ), существенно расширяются диапазоны измерений в сторону измерения, как сверхмалых, так и очень больших значений ФВ. Непрерывно повышаются требования к точности измерений. Например, развитие нанотехнологий (бесконтактная притирка, электронная литография и др.) позволяет получить размеры деталей с точностью до нескольких нанометров, что предъявляет соответствующие требования к качеству измерительной информации. Качество измерительной информации определяется нано-уровнем метрологического обеспечения технологических процессов, давшим толчок к созданию нанометрии, т.е. метрологии в области нанотехнологий. В соответствии с основным уравнением измерения измерительная процедура сводится к сравнению неизвестного размера с известным, в качестве которого выступает размер соответствующей единицы Международной системы единиц. Для того чтобы перевести узаконенные единицы в русло практического применения в различных областях, они должны быть реализованы физически. Воспроизведение единицы представляет собой совокупность операции по её материализации с помощью эталона. Таковым может быть физическая мера, средство измерений, стандартный образец или измерительная система. Эталон, обеспечивающий воспроизведение единицы с наивысшей в стране (по сравнению с другими эталонами той же единицы) точностью, называется первичным эталоном. Размер единицы передается «сверху вниз», от более точных СИ к менее точным «по цепочке»: первичный эталон - вторичный эталон - рабочий эталон 0-го разряда… - рабочее средство измерений (РСИ). Соподчинение СИ, участвующих в передаче размера единицы эталона к РСИ, устанавливается в поверочных схемах СИ. Эталоны и опорные результаты измерений в области физических измерений обеспечивают установленные реперы, к которым аналитические лаборатории могут привязывать результаты своих измерений. Прослеживаемость результатов измерений к международно принятым и установленным опорным значениям (реперам) вместе с установленными неопределенностями результатов измерений, описанные в Международном документе ИСО/МЭК 17025, формируют основу для сличений и признания результатов на международном уровне. В этом реферате "Физические основы измерений", который предназначен для студентов 1-3 курсов инженерных специальностей (направление "Машиностроительные технологии и оборудование"), акцентируется внимание на то, что в основе любых измерений (физических, технических и т.д.) лежат физические законы, понятия и определения. Технические и естественные процессы определяются количественными данными, характеризующими свойства и состояния предметов и тел. Для получения таких данных возникла необходимость в развитии методов измерения и системе единиц. Усложняющиеся взаимосвязи в технологиях и хозяйственной деятельности привели к необходимости введения единой системы единиц измерения. Это проявилось в законодательных введениях новых единиц для измеряемых величин или отмене старых единиц (на- пример, замена единицы измерения мощности одна лошадиная сила на ватт или киловатт). Как правило, новые определения единиц вводятся после того, как в естественных науках указан способ достижения повышенной точности определения единиц и калибровки с их помощью масштабов, часов и всего другого, что находит затем применение в технике и повседневной жизни. Ещё Леонард Эйлер (математик и физик) дал приемлемое и для наших дней определение физической величины. В своей «Алгебре» он писал: "Прежде всего, называется величиной всё то, что способно увеличиваться или уменьшаться, или то, к чему можно нечто прибавить или от чего можно нечто отнять. Однако невозможно определить или измерить одну величину иначе, как, приняв в качестве известной другую величину этого же рода и указав отношение, в котором она находится к ней. При измерении величин всякого рода мы приходим, следовательно, к тому, что, прежде всего, устанавливается некоторая известная величина того же рода, именуемая единицей измерения и зависящая исключительно от нашего произвола. Затем определяется, в каком отношении находится данная вели- чина к этой мере, что всегда выражается через числа, так что число является не чем иным, как отношением, в котором одна величина 10 находится к другой, принятой за единицу". Таким образом, измерить какую-либо физическую (техническую и другую) величину это означает, что данную величину необходимо сравнить с другой однородной физической величиной, принятой за единицу измерения (с эталоном). Количество (число) физических величин с течением времени изменяется. Можно привести большое число определений величин и соответствующих конкретных единиц, причём это множество постоянно растёт ввиду роста потребностей общества. Так, например, с развитием теории электричества, магнетизма, атомной и ядерной физики введены величины, характерные для этих разделов физики. Иногда в отношении измеряемой величины сначала несколько изменяют постановку вопроса. Например, нельзя сказать: это «голубое», а то «наполовину голубое», ибо невозможно указать единицу, с которой можно было бы сравнивать оба оттенка цвета. Однако вместо этого можно задаться вопросом о спектральной плотности излучения в диапазоне длин волн л от 400 до 500 нм (1 нанометр=10-7 см =10-9 м) и обнаружить, что новая постановка вопроса допускает введение определения, которое соответствует не «наполовину голубое», а понятию «в два раза меньшей интенсивности». Понятия величины и единицы их измерения меняются с течением времени и в понятийном аспекте. Примером может служить радиоактивность вещества. Введённая первоначально единица измерения радиоактивности 1 кюри, связанная с именем Кюри, допускавшаяся к применению до 1980 г, обозначается как 1 Ки, сводится к количеству вещества, измеряемому в граммах. В настоящее время под активностью радиоактивного вещества A подразумевается число распадов в секунду и измеряется в беккерелях. В системе СИ активность радиоактивного вещества это 1 Бк = 2,7?10-11 Ки. Размерность [А] = беккерель = с -1. Хотя физический эффект поддаётся определению и для него можно установить единицу, однако количественная характеристика воздействия оказывается очень затруднительной. Например, если быстрая частица (скажем, альфа-частица, возникшая при радиоактивном распаде вещества) отдаёт всю свою кинетическую энергию при торможении в живой ткани, то этот процесс можно описать, ис- пользуя понятие дозы облучения, т. е. потери энергии на единицу 11 массы. Однако до сих пор учёт биологического воздействия такой частицы является предметом дискуссии. Эмоциональные понятия до настоящего времени не поддаются количественному учёту, не удаётся определить соответствующих им единиц. Больной не может количественно выразить степень своего недомогания. Однако большую помощь врачу при установлении диагноза могут оказать измерения температуры и частоты пульса, а также лабораторные анализы, характеризуемые количественными данными. Одной из целей эксперимента является поиск таких параметров, описывающих физические явления, которые можно измерить, получив численные значения. Между этими измеренными значениями уже можно установить определённую функциональную зависимость. Комплексное экспериментальное исследование физических свойств различных объектов обычно проводится с использованием результатов измерений целого ряда основных и производных величин. В этом отношении весьма характерным является пример акустических измерений, который включен в настоящее пособие в виде раздела. эталон физический измерение погрешность формула

1. Физические основы измерений

Физическая величина и её числовое значение

Физическими величинами называют свойства (характеристики) материальных объектов и процессов (предметов, состояний), которые можно прямо или косвенно измерить. Законы, связывающие между собой эти величины, имеют вид математических уравнений. Каждая физическая величина G представляет собой произведение численного значения на единицу измерения:

Физическая величина = Численное значение Ч Единица измерения.

Число, которое при этом, получается, называют численным значением физической величины. Таким образом, выражение t = 5 с (1.1.) означает, что измеренное время составляет пятикратное повторение секунды. Однако для характеристики физической величины только одного численного значения недостаточно. Поэтому никогда нельзя опускать соответствующую единицу измерения. Все физические величины делятся на основные и производные величины. В качестве основных величин используются: длина, время, масса, температура, сила тока, количество вещества, сила света. Производные величины получают с помощью основных величин либо используя выражения для законов природы, либо путем целесообразного определения через умножение или деление основных величин.

Например,

Скорость = Путь/Время; t S v = ; (1.2)

Заряд = Сила тока Ч Время; q = I ? t . (1.3)

Для представления физических величин, особенно в формулах, таблицах или на графиках, используются специальные символы - обозначения величин. В соответствии с международными соглашениями введены соответствующие стандарты на обозначения физических и технических величин. Принято набирать обозначения физических величин курсивом. Курсивом обозначаются и индексы, если они представляют собой обозначения, т.е. символы физических величин, а не сокращения.

Квадратные скобки , содержащие обозначение величины, означают единицу измерения величины, например, выражение [U] = В читается следующим образом: «Единица измерения напряжения равна вольту». Неправильно заключать в квадратные скобки единицу измерения (например, [В]). Фигурные скобки { }, содержащие обозначения величины, означают «численное значение величины», например выражение {U} = 220 читается следующим образом: «численное значение напряжения равно 220». Так как каждое значение величины представляет собой произведение численного значения на единицу измерения, для приведенного выше примера получается: U = {U}?[U] = 220 В. (1.4) Между численным значением и единицей измерения физической величины при написании необходимо оставлять интервал, например: I = 10 А. (1.5) Исключения составляют обозначения единиц: градусов (0), минут (") и секунд ("). Слишком большие или малые порядки численных значений (по отношению к 10) сокращённо выражаются с помощью введения новых разрядов единиц, называемых так же, как и старые, но с добавлением приставки. Так образуются новые единицы, например 1 мм 3 = 1?10-3 м. Сама физическая величина при этом не изменяется, т.е. при уменьшении единицы в F раз, её числовое значение увеличится, соответственно, в F раз. Такая инвариантность физической величины имеет место не только при изменении единицы десятикратно (в степени n раз), но и при прочих изменениях этой единицы. В табл. 1.1 приведены официально принятые сокращения названий единиц. 14 Приставки к единицам системы СИ Таблица 1.1 Обозначение Приставка Латинское Русское Логарифм степени десяти Приставка Латинское Русское Логарифм степени десяти Тера T Т 12 санти c с -2 Гига G Г 9 милли m м -3 Мега M М 6 микро м мк -6 кило k к 3 нано n н -9 гекто h г 2 пико p п -12 дека da да 1 фемто f ф -15 деци d д -1 атто.

2. Измерение. Основные понятия

Понятие измерения

Измерение является одной из самых древнейших операций в процессе познания человеком окружающего материального мира. Вся история цивилизации представляет собой непрерывный процесс становления и развития измерений, совершенствования средств методов и измерений, повышения их точности и единообразия мер.

В процессе своего развития человечество прошло путь от измерений на основе органов чувств и частей человеческого тела до научных основ измерений и использования для этих целей сложнейших физических процессов и технических устройств. В настоящее время измерениями охватываются все физические свойства материи практически независимо от диапазона изменения этих свойств.

С развитием человечества измерения приобретали все большее значение в экономике, науке, технике, в производственной деятельности. Многие науки стали называться точными благодаря тому, что они могут устанавливать с помощью измерений количественные соотношения между явлениями природы. По существу, весь прогресс науки и техники неразрывно связан с возрастанием роли и совершенствованием искусства измерений. Д.И. Менделеев говорил, что «наука начинается с тех пор, как начинают измерять. Точная наука немыслима без меры».

Не меньшее значение имеют измерения в технике, производственной деятельности, при учете материальных ценностей, при обеспечении безопасных условий труда и здоровья человека, в сохранении окружающей среды. Современный научно-технический прогресс невозможен без широкого использования средств измерений и проведения многочисленных измерений.

В нашей стране проводится более десятки миллиардов измерений в день, свыше 4 млн. человек считают измерение своей профессией. Доля затрат на измерения составляет (10-15) % всех затрат общественного труда, достигая в электронике и точном машиностроении (50-70) %. В стране используется около миллиарда средств измерений. При создании современных электронных систем (ЭВМ, интегральных схем и т. п.) до (60-80) % затрат приходится на измерения параметров материалов, компонентов и готовых изделий.

Все это говорит о том, что невозможно переоценить роль измерений в жизни современного общества.

Хотя человек проводит измерения с незапамятных времен и интуитивно этот термин представляется понятным, точно и правильно определить его не просто. Об этом говорит, например, дискуссия по вопросам понятия и определения измерения, прошедшая не так давно на страницах журнала «Измерительная техника». В качестве примера ниже приводятся различные определения понятия «измерение», взятые из литературы и нормативных документов разных лет.

Измерением называется познавательный процесс, заключаю-щийся в сравнении путем физического эксперимента данной величины с некоторым ее значением, принятым за единицу сравнения (М.Ф. Маликов, Основы метрологии, 1949 г.).

Нахождение значения физической величины опытным путем с помощью специальных технических средств (ГОСТ 16263-70 по терминам и определениям метрологии, ныне не действующий).

Совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины (Рекомендации по межгосударственной стандартизации РМГ 29-99 Метрология. Основные термины и определения, 1999 г).

Совокупность операций, имеющих целью определить значение величины (Международный словарь по терминам в метрологии, 1994 г.).

Измерение -- совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений -- мер, измерительных приборов,измерительных преобразователей, систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации).

· Принцип измерений -- физическое явление или эффект, положенный в основу измерений.

· Метод измерений -- приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

Характеристикой точности измерения является его погрешность или неопределённость. Примеры измерений:

1. В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают её размер с единицей, хранимой линейкой, и, произведя отсчёт, получают значение величины (длины, высоты, толщины и других параметров детали).

2. С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчёт.

В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая, или не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений, Шкала Мооса -- шкала твёрдости минералов.

Наука, предметом изучения которой являются все аспекты измерений, называется метрологией.

Классификация измерений

По видам измерений

Основная статья: Виды измерений

Согласно РМГ 29-99 «Метрология. Основные термины и определения» выделяют следующие виды измерений:

· Прямое измерение -- измерение, при котором искомое значение физической величины получают непосредственно.

· Косвенное измерение -- определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.

· Совместные измерения -- проводимые одновременно измерения двух или нескольких неодноимённых величин для определения зависимости между ними.

· Совокупные измерения -- проводимые одновременно измерения нескольких одноимённых величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.

· Равноточные измерения -- ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.

· Неравноточные измерения -- ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.

· Однократное измерение -- измерение, выполненное один раз.

· Многократное измерение -- измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, то есть состоящее из ряда однократных измерений

· Статическое измерение -- измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения.

· Динамическое измерение -- измерение изменяющейся по размеру физической величины.

· Относительное измерение -- измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.

Также стоит отметить, что в различных источниках дополнительно выделяют такие виды измерений: метрологические и технические, необходимые и избыточные и др.

По методам измерений

Метод непосредственной оценки -- метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений.

· Метод сравнения с мерой -- метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.

· Нулевой метод измерений -- метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.

· Метод измерений замещением -- метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины.

· Метод измерений дополнением -- метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению.

· Дифференциальный метод измерений -- метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами.

По условиям, определяющим точность результата

· Метрологические измерения

· Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения .

· Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения .

· Технические измерения , в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др.

По отношению к изменению измеряемой величины

Динамическое и статическое.

По результатам измерений

· Абсолютное измерение -- измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.

· Относительное измерение -- измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение изменения величины по отношению к одноимённой величине, принимаемой за исходную.

Классификация рядов измерений

По точности

· Равноточные измерения -- однотипные результаты, получаемые при измерениях одним и тем же инструментом или им подобным по точности прибором, одним и тем же (или аналогичным) методом и в тех же условиях.

· Неравноточные измерения -- измерения, произведённые в случае, когда нарушаются эти условия.

3. Неопределенность и погрешность измерений

Аналогично погрешностям, неопределенности измерений могут быть классифицированы по различным признакам.

По способу выражения их подразделяют на абсолютные и относительные.

Абсолютная неопределенность измерения -- неопределенность измерения, выраженная в единицах измеряемой величины.

Относительная неопределенность результата измерений -- отношение абсолютной неопределенности к результату измерений.

1. По источнику возникновения неопределенности измерений, подобно погрешностям, можно разделять на инструментальные, методические и субъективные.

2. По характеру проявления погрешности разделяют на систематические, случайные и грубые. В «Руководстве по выражению неопределенности измерения» отсутствует классификация неопределенностей по этому признаку. В самом начале этого документа указано, что перед статистической обработкой рядов измерений все известные систематические погрешности должны быть из них исключены. Поэтому деление неопределенностей на систематические и случайные не вводилось. Вместо него приведено деление неопределенностей по способу оценивания на два типа:

* неопределенность, оцениваемая по типу А (неопределенность типа А) -- неопределенность, которую оценивают статистическими методами,

* неопределенность, оцениваемая по типу Б (неопределенность типа Б) -- неопределенность, которую оценивают не статистическими методами.

Соответственно предлагается и два метода оценивания:

1. оценивание по типу А -- получение статистических оценок на основе результатов ряда измерений,

2. оценивание по типу Б -- получение оценок на основе априорной нестатистической информации.

На первый взгляд, кажется, что это нововведение заключается лишь в замене существующих терминов известных понятий другими. Действительно, статистическими методами можно оценить только случайную погрешность, и поэтому неопределенность типа А -- это то, что ранее называлось случайной погрешностью. Аналогично, НСП можно оценить только на основе априорной информации, и поэтому между неопределенностью по типу Б и НСП также имеется взаимно однозначное соответствие.

Однако, введение этих понятий является вполне разумным. Дело в том, что при измерениях по сложным методикам, включающим большое количество последовательно выполняемых операций, необходимо оценивать и учитывать большое количество источников неопределенности конечного результата. При этом их деление на НСП и случайные может оказаться ложно ориентирующим. Приведем два примера.

Пример 1. Существенную часть неопределенности аналитического измерения может составить неопределенность определения калибровочной зависимости прибора, являющаяся НСП в момент проведения измерений. Следовательно, ее необходимо оценивать на основе априорной информации нестатистическими методами. Однако во многих аналитических измерениях основным источником этой неопределенности является случайная погрешность взвешивания при приготовлении калибровочной смеси. Для повышения точности измерений можно применить многократное взвешивание этого стандартного образца и найти оценку погрешности этого взвешивания статистическими методами. Этот пример показывает, что в некоторых измерительных технологиях в целях повышения точности результата измерения ряд систематических составляющих неопределенности измерений может быть оценен статистическими методами, т. е. являться неопределенностями типа А.

Пример 2 . По ряду причин, например, в целях экономии производственных затрат, методика измерения предусматривает проведение не более трех однократных измерений одной величины. В этом случае результат измерений может определяться как среднее арифметическое, мода или медиана полученных значений, но статистические методы оценивания неопределенности при таком объеме выборки дадут очень грубую оценку. Более разумным представляется априорный расчет неопределенности измерения по нормируемым показателям точности СИ, т. е. ее оценка по типу Б. Следовательно, в этом примере, в отличие от предыдущего, неопределенность результата измерений, значительная часть которой обусловлена влиянием факторов случайного характера, является неопределенностью типа Б.

Вместе с тем, традиционное разделение погрешностей на систематические, НСП и случайные также не теряет своего значения, поскольку оно точнее отражает другие признаки: характер проявления в результате измерения и причинную связь с эффектами, являющимися источниками погрешностей.

Таким образом, классификации неопределенностей и погрешностей измерений не являются альтернативными и взаимно дополняют друг друга.
В Руководстве имеются и некоторые другие терминологические нововведения. Ниже приведена сводная таблица терминологических отличий концепции неопределенности от классической теории точности.

Термины -- примерные аналоги концепции неопределенности и классической теории точности

Классическая теория

Концепция неопределенности

Погрешность результата измерения

Неопределенность результата измерения

Случайная погрешность

Неопределенность, оцениваемая по тилу А

Неопределенность, оцениваемая по типу Б

СКО (стандартное отклонение) погрешности результата измерения

Стандартная неопределенность результата измерения

Доверительные границы результата измерения

Расширенная неопределенность результата измерения

Доверительная вероятность

Вероятность охвата (покрытия)

Квантиль (коэффициент) распределения погрешности

Коэффициент охвата (покрытия)

Новые термины, указанные в этой таблице, имеют следующие определения.

1. Стандартная неопределенность -- неопределенность, выраженная в виде стандартного отклонения.

2. Расширенная неопределенность -- величина, задающая интервал вокруг результата измерения, в пределах которого, как ожидается, находится большая часть распределения значений, которые с достаточным основанием могут быть приписаны измеряемой величине.

Примечания.

1. Каждому значению расширенной неопределенности сопоставляется значение ее вероятности охвата Р.

2. Аналогом расширенной неопределенности являются доверительные границы погрешности измерений.

3. Вероятность охвата -- вероятность, которой, по мнению экспериментатора, соответствует расширенная неопределенность результата измерений.

Примечания.

1. Аналогом этого термина является доверительная вероятность, соответствующая доверительным границам погрешности.

2. Вероятность охвата выбирается с учетом информации о виде за-кона распределения неопределенности.

4. Основы построение систем единиц физических величин

Системы единиц физических величин

Основной принцип построения системы единиц - удобство использования. Для обеспечения этого принципа произвольно выбираются некоторые единицы. Произвол содержится как в выборе самих единиц (основных единиц физических величин), так и в выборе их размера. По этой причине, определяя основные величины и их единицы, системы единиц физических величин могут быть построены самые разные. К этому следует добавить, что и производные единицы физических величин также могут определяться по-разному. Сказанное означает, что систем единиц может быть построено очень много. Остановимся на общих чертах всех систем.

Основная общая черта - четкое определение сущности и физического смысла основных физических единиц и величин системы. Желательно, но, как указывалось в предыдущем разделе, необязательно, чтобы основная физическая величина могла быть воспроизведена с высокой точностью и могла быть передана средством измерения с минимальной потерей точности.

Следующий важный в построении системы шаг - установить размер основных единиц, т. е. договориться и законодательно закрепить процедуру воспроизведения основной единицы.

Поскольку все физические явления связаны между собой законами, записываемыми в виде уравнений, выражающими связь между физическими величинами, при установлении производных единиц, нужно выбрать определяющее соотношение для производной величины. Затем в таком выражении следует приравнять единице или другому постоянному числу коэффициент пропорциональности, входящий в определяющее соотношение. Таким образом, образуется производная единица, которой можно дать следующее определение: «Производная единица физической величины - единица, размер которой связывается с размерами основных единиц соотношениями, выражающими физические законы, или определениями соответствующих величин».

При построении системы единиц, состоящей из основных и производных единиц, следует подчеркнуть два наиболее важных момента:

Первое - разделение единиц физических величин на основные и производные не означает, что первые имеют какое-либо преимущество или более важны, чем последние. В разных системах основными могут быть различные единицы, и число основных единиц в системе также может быть разным.

Второе - следует отличать уравнения связи между величинами и уравнения связи между их числовым и значения ми. Уравнения связи представляют собой соотношения в общем виде, не зависящие от единиц. Уравнения связи между числовыми значениями могут иметь различный вид в зависимости от выбранных единиц для каждой из величин. Например если выбрать в качестве основных величин метр, килограмм массы и секунду, то соотношения между механическими производными единицами, такими как сила, работа, энергия, скорость и т. д., будут отличаться от таковых, если основными единицами будут выбраны сантиметр, грамм, секунда или метр, тонна, секунда.

Характеризуя различные системы единиц физических величин, вспомним, что первый шаг в построении систем был связан с попыткой связать основные единицы с величинами, встречающимися в природе. Так, в эпоху Великой французской революции в 1790-1791 гг. было предложено единицей длины считать одну сорокамиллионную долю земного меридиана. В 1799 г. эта единица была узаконена в виде прототипа метра - специальной платино-иридиевой линейки с делениями. Одновременно был определен килограмм как вес одного кубического дециметра воды при 4°С. Для хранения килограмма была изготовлена образцовая гиря - прототип килограмма. В качестве единицы времени была узаконена 1/86400 доля средних солнечных суток.

В дальнейшем от естественного воспроизведения этих величин пришлось отказаться, поскольку процесс воспроизведения связан с большими погрешностями. Указанные единицы были закреплены законодательно по характеристикам их прототипов, а именно:

· единица длины определялась как расстояние между осями штрихов на платино-иридиевом прототипе метра при 0 °С;

· единица массы - масса платиноиридиевого прототипа килограмма;

· единица силы - вес той же гири в месте ее хранения в Международном бюро по мерам и весам (МБМВ) в Севре (район Парижа);

· единица времени - звездная секунда, составляющая 1/86400 часть звездных суток. Т. к. вследствие вращения Земли вокруг Солнца за один год звездных суток проходит на единицу больше, чем солнечных, тозвездная секунда составляет 0, 99 726 957 от солнечной секунды.

Эта основа всех современных систем единиц физических величин сохранилась до настоящего времени. К механическим основным единицам добавлялись тепловые (Кельвин), электрические (Ампер), оптические (кандела), химические (моль), но основа сохранилась до сих пор. Следует добавить, что развитие измерительной техники и в особенности открытие и внедрение лазеров в измерения позволили найти и узаконить новые, очень точные способы воспроизведения основных единиц физических величин. На таких моментах мы остановимся в следующих разделах, посвященных отдельным видам измерений.

Здесь же кратко перечислим наиболее употребительные в естествознании XX века системы единиц, часть из которых существует до сих пор в виде внесистемных или жаргонных единиц.

На территории Европы за последние десятилетия широко применялись три системы единиц: СГС (сантиметр, грамм, секунда), МКГСС (метр, килограмм-сила, секунда) и система СИ, являющаяся основной международной системой и предпочтительной на территории бывшего СССР «во всех областях науки, техники и народного хозяйства, а также при преподавании».

Последняя цитата, взятая в кавычки, приведена из государственного стандарта СССР ГОСТ 9867-61 «Международная система единиц», введенного в действие с 1 января 1963 г. Подробнее на этой системе мы остановимся в следующем параграфе. Здесь лишь укажем, что основными механическими единицами в системе СИ являются метр, килограмм-масса и секунда.

Система СГС существует более ста лет и очень удобна в некоторых научных и инженерных областях. Основным достоинством системы СГС является логичность и последовательность ее построения. При описании электромагнитных явлений присутствует только одна константа - скорость света. Эта система была разработана в период с 1861 по 1870 гг. Комитетом по электрическим эталонам Британии. Основана система СГС была на системе единиц немецкого математика Гаусса, который предложил метод построения системы, основанной на трех основных единицах - длины, массы и времени. Система Гаусса использовала миллиметр, миллиграмм и секунду.

Для электрических и магнитных величин были предложены два различных варианта системы СГС - абсолютная электростатическая система СГСЭ и абсолютная электромагнитная система СГСМ. Всего в развитии системы СГС существовало семь различных систем, имевших в составе основных единиц сантиметр, грамм и секунду.

В конце прошлого века появилась система МКГСС , основными единицами в которой являлись метр, килограмм-сила и секунда. Эта система получила широкое распространение в прикладной механике, в теплотехнике и родственных областях. У этой системы много недостатков, начиная с путаницы в названиях основной единицы - килограмма, означавшего килограмм-силу в отличие от широко используемого килограмма-массы. Для единицы массы в системе МКГСС не нашлось даже названия и ее обозначали как т. е. м. (техническая единица массы). Тем не менее система МКГСС частично используется до сих пор хотя бы в определении мощности двигателей в лошадиных силах. Лошадиная сила - мощность, равная 75 кгс м/с -до сих пор используется в технике как жаргонная единица.

В 1919 г. во Франции была принята система МТС - метр, тонна, секунда. Эта система также первым советским стандартом на механические единицы, принятым в 1929 г.

В 1901 г. итальянский физик П. Джорджи предложил систему механических единиц, построенную на трех механических основных единицах - метре , килограмме массы и секунде . Преимуществом этой системы было то, что ее было легко связать с абсолютной практической системой электрических и магнитных единиц, т. к. единицы работы (джоуль) и мощности (ватт) в этих системах совпадали. Так была найдена возможность использовать преимущества всеобъемлющей и удобной системы СГС со стремлением «сшить» электрические и магнитные единицы с единицами механическими.

Достигнуто это было путем введения двух постоянных - электрической (е 0) проницаемости вакуума и магнитной проницаемости вакуума (м 0). Появляется некоторое неудобство в записи формул, описывающих силы взаимодействия покоящихся и движущихся электрических зарядов и, соответственно, в определении физического смысла этих констант. Однако эти недостатки в большой степени окупаются такими удобствами, как единство выражения энергии при описании как механических, так и электро-магнитных явлений, т. к.

1 джоуль = 1 ньютон, метр = 1 вольт, кулон = 1 ампер, вебер.

В результате поисков оптимального варианта международной системы единиц в 1948 г. IX Генеральная конференция по мерам и весам на основе опроса стран-членов Метрической конвенции приняла вариант, в котором предлагалось в качестве основных единиц принять метр, килограмм массы и секунду. Килограмм-силу и связанные с ней производные единицы предлагалось исключить из рассмотрения. Окончательное решение на основании результатов опроса 21 страны было сформулировано на Х Генеральной конференции по мерам и весам в 1954 г.

Резолюция гласила:

«В качестве основных единиц практической системы для международных сношений принять:

единицу длины - метр

единицу массы - килограмм

единицу времени - секунду

единицу силы тока - Ампер

единицу термодинамической температуры - градус Кельвина

единицу силы света - свечу».

Позднее по настоянию химиков международная система была дополнена седьмой основной единицей количества вещества - молем.

В дальнейшем международная система СИ или в английской транскрипции Sl (SystemInternational) несколько уточнялась, например единица температуры получила название Кельвин вместо «градус Кельвина», система эталонов электрических единиц была переориентирована с Ампера на Вольт, поскольку был создан эталон разности потенциалов на основе квантового эффекта - эффекта Джозефсона, который позволил уменьшить погрешность воспроизведения единицы разности потенциалов - Вольта -более чем на порядок. В 1983 г. на XVIII Генеральной конференции по мерам и весам было принято новое определение метра. По новому определению метр представляет собой расстояние, проходимое светом за 1/2997925 долю секунды. Такое определение, точнее переопределение, понадобилось в связи с внедрением в эталонную технику лазеров. Следует сразу указать, что размер единицы, в данном случае метра, не изменяется. Изменяются только методы и средства ее воспроизведения, отличающиеся меньшей погрешностью (большей точностью).

5 . Международная система единиц (СИ)

Развитие науки и техники все настойчивее требовало унификации единиц измерений. Требовалась единая система единиц, удобная для практического применения и охватывающая различные области измерений. Кроме того, она должна была быть когерентной. Так как метрическая система мер широко использовалась в Европе с начала 19 века, то она была взята за основу при переходе к единой международной системе единиц.

В 1960 г. ХI Генеральная конференция по мерам и весам утвердила Международную систему единиц физических величин (русское обозначение СИ, международное SI) на основе шести основных единиц. Было принято решение:

Присвоить системе, основанной на шести основных единицах, наименование «Международная система единиц»;

Установить международное сокращение для наименования системы SI;

Ввести таблицу приставок для образования кратных и дольных единиц;

Образовать 27 производных единиц, указав, что могут быть добавлены и другие производные единицы.

В 1971 к СИ была добавлена седьмая основная единица количества вещества (моль).

При построении СИ исходили из следующих основных принципов:

Система базируется на основных единицах, которые являются независимыми друг от друга;

Производные единицы образуются по простейшим уравнениям связи и для величины каждого вида устанавливается только одна единица СИ;

Система является когерентной;

Допускаются наряду с единицами СИ широко используемые на практике внесистемные единицы;

В систему входят десятичные кратные и дольные единицы.

Преимущества СИ :

- универсальность , т.к. она охватывает все области измерений;

- унификация единиц для всех видов измерений - применение одной единицы для данной физической величины, например, для давления, работы, энергии;

Единицы СИ по своему размеру удобны для практического применения ;

Переход на нее повышает уровень точности измерений , т.к. основные единицы этой системы могут быть воспроизведены более точно, чем единицы других систем;

Это единая международная система и ее единицы распространены.

В СССР Международная система (СИ) была введена в действие ГОСТ 8.417-81. По мере дальнейшего развития СИ из нее был исключен класс дополнительных единиц, введено новое определение метра и введен ряд других изменений. В настоящее время в РФ действует межгосударственный стандарт ГОСТ 8.417-2002, который устанавливает единицы физических величин, применяемых в стране. В стандарте указано, что подлежат обязательному применению единицы СИ, а также десятичные кратные и дольные этих единиц.

Кроме того, допускается применять некоторые единицы, не входящие в СИ, и их дольные и кратные единицы. В стандарте указаны также внесистемные единицы и единицы относительных величин.

Основные единицы СИ представлены в таблице.

Величина

Наименование

Размерность

Наименование

Обозначение

между-народн.

килограмм

Электрический ток

Термодинамическая температура

Количество вещества

Сила света

Производные единицы СИ образуются по правилам образования когерентных производных единиц (пример см. выше). Приведены примеры таких единиц и производных единиц, имеющих специальные наименования и обозначения. 21 производной единице дали наименования и обозначения по именам ученых , например, герц, ньютон, паскаль, беккерель.

В отдельном разделе стандарта приведены единицы, не входящие в СИ. К ним относятся:

1. Внесистемные единицы , допускаемые к применению наравне с СИ из-за их практической важности. Они разделены на области применения. Например, во всех областях применяются единицы тонна, час, минута, сутки, литр; в оптике диоптрия, в физике электрон-вольт и т.п.

2. Некоторые относительные и логарифмические величины и их единицы. Например, процент, промилле, бел.

3. Внесистемные единицы, временно допускаемые к применению. Например, морская миля, карат (0,2 г), узел, бар.

В отдельном разделе приведены правила написания обозначений единиц, использования обозначений единиц в заголовках граф таблиц и т.п.

В приложениях к стандарту даны правила образования когерентных производных единиц СИ, таблица соотношений некоторых внесистемных единиц с единицами СИ и рекомендации по выбору десятичных кратных и дольных единиц.

Ниже приводятся примеры некоторых производных единиц СИ.

Единицы, в наименования которых входят наименования основных единиц. Примеры: единица площади - квадратный метр , размерность L 2 , обозначение единицы м 2 ; единица потока ионизирующих частиц - секунда в минус первой степени , размерность T -1 , обозначение единицы с -1 .

Единицы, имеющие специальные названия. Примеры:

сила, вес - ньютон, размерностьLMT -2 , обозначение единицы Н (международное N);энергия, работа, количество теплоты - джоуль, размерность L 2 MT -2 , обозначение Дж (J).

Единицы, наименования которых образованы с использованием специальных наименований. Примеры:

момент силы - наименование ньютон-метр , размерность L 2 MT -2 , обозначение Нм (Nm); удельная энергия - наименование джоуль на килограмм , размерность L 2 T -2 , обозначение Дж/кг (J/kg).

Десятичные кратные и дольные единицы образуются с помощью множителей и приставок, от 10 24 (йотта) до 10 -24 (йокто).

Присоединение к наименованию двух и более приставок подряд не допускается, например, не килокилограмм, а тонна, являющаяся внесистемной единицей, допускаемой наряду с СИ. В связи с тем, что наименование основной единицы массы содержит приставку кило, для образования дольных и кратных единиц массы используют дольную единицу грамм и приставки присоединяются к слову «грамм» -- миллиграмм, микрограмм.

Выбор кратной или дольной единицы от единицы СИ диктуется прежде всего удобством ее применения, причем, числовые значения полученных величин должны быть приемлемы на практике. Считается, что числовые значения величин легче всего воспринимаются в диапазоне от 0,1 до 1000.

В некоторых областях деятельности всегда используют одну и ту же дольную или кратную единицу, например, в чертежах в машиностроении размеры всегда выражаются в миллиметрах.

Для снижения вероятности ошибок при расчетах десятичные и кратные дольные единицы рекомендуется подставлять только в конечный результат, а в процессе вычислений все величины выражать в единицах СИ, заменяя приставки степенями числа 10.

В ГОСТ 8.417-2002 приведены правила написания обозначения единиц, основные из которых следующие.

Следует применять обозначения единиц буквами или знаками , причем устанавливается два вида буквенных обозначений: международные и русские. Международные обозначения пишутся при отношениях с зарубежными странами (договора, поставки продукции и документации). При использовании на территории РФ используются русские обозначения. При этом на табличках, шкалах и щитках средств измерений применяются только международные обозначения.

Названия единиц пишутся с маленькой буквы, если они не стоят в начале предложения. Исключение составляет градус Цельсия.

В обозначениях единиц точку как знак сокращения не ставят , печатаются они прямым шрифтом. Исключения составляют сокращения слов, которые входят в наименование единицы, но сами не являются наименованиями единиц. Например, мм рт. ст.

Обозначения единиц применяют после числовых значений и помещают в строку с ними (без переноса на следующую строку). Между последней цифрой и обозначением следует оставлять пробел, кроме знака, поднятого над строкой.

При указании значений величин с предельными отклонениями следует заключать числовые значения в скобки и обозначения единиц помещать после скобок или проставлять их и после числового значения величины и после ее предельного отклонения.

Буквенные обозначения единиц, входящих в произведение , следует отделять точками на средней линии, как знаками умножения . Допускается отделять буквенные обозначения пробелами, если это не приводит к недоразумению. Геометрические размеры обозначаются знаком «х».

В буквенных обозначениях отношения единиц в качестве знака деления должна применяться только одна черта : косая или горизонтальная. Допускается применять обозначения единиц в виде произведения обозначений единиц, возведенных в степени.

При применении косой черты обозначения единиц в числителе и знаменателе следует помещать в одну строку , произведение обозначений в знаменателе следует заключать в скобки .

При указании производной единицы, состоящей из двух и более единиц, не допускается комбинировать буквенные обозначения и наименования единиц , т.е. для одних обозначения, для других - наименования.

Обозначения единиц, наименования которых образованы по фамилиям ученых, пишутся с прописной (заглавной) буквы .

Допускается применять обозначения единиц в пояснениях обозначений величин к формулам. Помещение обозначений единиц в одной строке с формулами, выражающими зависимости между величинами и их числовыми значениями, представленными в буквенной форме, не допускается.

В стандарте выделены единицы по областям знаний в физике и указаны рекомендованные кратные и дольные единицы. Выделено 9 областей использования единиц:

1. пространство и время;

2. периодические и связанные с ними явления;

Подобные документы

    Суть физической величины, классификация и характеристики ее измерений. Статические и динамические измерения физических величин. Обработка результатов прямых, косвенных и совместных измерений, нормирование формы их представления и оценка неопределенности.

    курсовая работа , добавлен 12.03.2013

    Общие правила конструирования систем единиц. Основные, дополнительные и производные единицы системы СИ. Правила написания обозначений единиц. Альтернативные современные системы физических единиц. Сущность эффекта Джозефсона. Система единиц Планка.

    контрольная работа , добавлен 11.02.2012

    Классификация средств измерений. Понятие о структуре мер-эталонов. Единая общепринятая система единиц. Изучение физических основ электрических измерений. Классификация электроизмерительной аппаратуры. Цифровые и аналоговые измерительные приборы.

    реферат , добавлен 28.12.2011

    Системы физических величин и их единиц, роль их размера и значения, специфика классификации. Понятие о единстве измерений. Характеристика эталонов единиц физических величин. Передача размеров единиц величин: особенности системы и используемых методов.

    реферат , добавлен 02.12.2010

    реферат , добавлен 09.01.2015

    Сущность понятия "измерение". Единицы физических величин и их системы. Воспроизведение единиц физических величин. Эталон единицы длины, массы, времени и частоты, силы тока, температуры и силы света. Стандарт ома на основе квантового эффекта Холла.

    реферат , добавлен 06.07.2014

    Физическая величина как свойство физического объекта, их понятия, системы и средства измерения. Понятие нефизических величин. Классификация по видам, методам, результатам измерения, условиям, определяющим точность результата. Понятие рядов измерений.

    презентация , добавлен 26.09.2012

    Основы измерения физических величин и степени их символов. Сущность процесса измерения, классификация его методов. Метрическая система мер. Эталоны и единицы физических величин. Структура измерительных приборов. Представительность измеряемой величины.

    курсовая работа , добавлен 17.11.2010

    Количественная характеристика окружающего мира. Система единиц физических величин. Характеристики качества измерений. Отклонение величины измеренного значения величины от истинного. Погрешности по форме числового выражения и по закономерности проявления.

    курсовая работа , добавлен 25.01.2011

    Основные, дополнительные и производные единицы системы СИ. Правила написания обозначений единиц. Альтернативные современные системы физических единиц. Эталонные меры в институтах метрологии. Специфика применения единиц СИ в области физики и техники.

УДК 389.6 ББК 30.10я7 К59 Козлов М.Г. Метрология и стандартизация: Учебник М., СПб.: Изд-во «Петербургский ин-т печати», 2001. 372 с. 1000 экз.

Рецензенты: Л.А. Конопелько, доктор технических наук, профессор В.А. Спаев, доктор технических наук, профессор

В книге излагаются основы системы обеспечения единства измерений, общепринятые в настоящее время на территории Российской Федерации. Метрология и стандартизация рассматриваются как науки, построенные на научно-техническом законодательстве, системе создания и хранения эталонов единиц физических величин, службе стандартных справочных данных и службе стандартных образцов. Книга содержит сведения о принципах создания измерительной техники, которая рассмотрена как объект внимания специалистов, занимающихся обеспечением единства измерений. Измерительная техника раскатегорирована по видам измерения, опирающихся на эталоны основных единицсистемы СИ. Рассмотрены основные положения службы стандартизации и сертификации в РФ.

Рекомендовано УМО в качестве учебника для специальностей: 281400 - «Технология полиграфического производства», 170800 - «Автоматизированное полиграфическое оборудование», 220200 - «Автоматизированные системы обработки информации и управления»

Оригинал-макет подготовлен издательством «Петербургский институт печати»

ISBN 5-93422-014-4

© М.Г. Козлов, 2001. © Н.А. Аксиненко, оформление, 2001. © Издательство «Петербургский институт печати», 2001.

http://www.hi-edu.ru/e-books/xbook109/01/index.html?part-002.htm

Предисловие

Часть I. МЕТРОЛОГИЯ

1. Введение в метрологию

1.1. Исторические аспекты метрологии

1.2. Основные понятия и категории метрологии

1.3. Принципы построения систем единиц физических величин

1.4. Воспроизведение и передача размера единиц физических величин. Эталоны и образцовые средства измерения

1.5. Измерительные приборы и установки

1.6. Меры в метрологии и измерительной технике. Поверка средств измерений

1.7. Физические константы и стандартные справочные данные

1.8. Стандартизация в обеспечении единства измерений. Метрологический словарь

2. Основы построение систем единиц физических величин

2.1. Системы единиц физических величин

2.2. Формулы размерности

2.3. Основные единицы системы СИ

2.4. Единица длины системы СИ - метр

2.5. Единица времени системы СИ - секунда

2.6. Единица температуры системы СИ - Кельвин

2.7. Единица силы электрического тока системы СИ - Ампера

2.8. Реализация основной единицы системы СИ - единицы силы света - канделы

2.9. Единица массы системы СИ - килограмм

2.10. Единица количества вещества системы СИ - моль

3. Оценка погрешностей результатов измерения

3.1. Введение

3.2. Систематические погрешности

3.3. Случайные погрешности измерений

Часть II. ИЗМЕРИТЕЛЬНАЯ ТЕХНИКА

4. Введение в измерительную технику

5. Измерения механических величин

5.1. Линейные измерения

5.2. Измерения шероховатости

5.3. Измерения твердости

5.4. Измерения давления

5.5. Измерения массы и силы

5.6. Измерения вязкости

5.7. Измерение плотности

6. Измерения температуры

6.1. Методы измерения температуры

6.2. Контактные термометры

6.3. Неконтактные термометры

7. Электрические и магнитные измерения

7.1. Измерения электрических величин

7.2. Принципы, лежащие в основе магнитных измерений

7.3. Магнитные преобразователи

7.4. Приборы для измерения параметров магнитных полей

7.5. Квантовые магнитометрические и гальваномагнитные приборы

7.6. Индукционные магнитометрические приборы

8. Оптические измерения

8.1. Общие положения

8.2. Фотометрические приборы

8.3. Спектральные измерительные приборы

8.4. Фильтровые спектральные приборы

8.5. Интерференционные спектральные приборы

9. ФИЗИКО-ХИМИЧЕСКИЕ ИЗМЕРЕНИЯ

9.1. Особенности измерения состава веществ и материалов

9.2. Измерения влажности веществ и материалов

9.3. Анализ состава газовых смесей

9.4. Измерения состава жидкостей и твердых тел

9.5. Метрологическое обеспечение физико-химических измерений

Часть III. СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ

10. Организационные и методические основы метрологии и стандартизации

10.1. Введение

10.2. Правовые основы метрологии и стандартизации

10.3. Международные организации по стандартизации и метрологии

10.4. Структура и функции органов Госстандарта РФ

10.5. Государственные службы по метрологии и стандартизации РФ

10.6. Функции метрологических служб предприятий и учреждений, являющихся юридическими лицами

11. Основные положения государственной службы стандартизации РФ

11.1. Научная база стандартизации РФ

11.2. Органы и службы систем стандартизации РФ

11.3. Характеристика стандартов разных категорий

11.4. Каталоги и классификаторы продукции как объект стандартизации. Стандартизация услуг

12. Сертификация измерительной техники

12.1. Основные цели и задачи сертификации

12.2. Термины и определения, специфические для cертификации

12.3. 12.3. Системы и схемы сертификации

12.4. Обязательная и добровольная сертификация

12.5. Правила и порядок проведения сертификации

12.6. Аккредитация органов по сертификации

12.7. Сертификация услуг

Заключение

Приложения

Предисловие

Содержание понятий «метрология» и«стандартизация» до сих пор является предметом дискуссий, хотя необходимость профессионального подхода кэтим проблемам очевидна. Так в последние годы появились многочисленные труды, в которых метрология и стандартизация подаются как инструмент сертификации измерительной техники, товаров и услуг. Такой постановкой вопроса все понятия метрологии принижаются и получают смысл как свод правил, законов, документов, позволяющих обеспечить высокое качество товарной продукции.

На самом деле метрология и стандартизация является очень серьезным научным занятием со времен основания в России Депо образцовых мер (1842 г.), преобразованного затем в Главную палату мер и весов России, возглавляемую многие годы великим ученым Д.И. Менделеевым. Наша страна была одним из учредителей Метрической Конвенции, принятой 125 лет назад. В годы Советской власти была создана система стандартизации стран экономической взаимопомощи. Все это свидетельствует о том, что в нашей стране метрология и стандартизация с давних пор являлись основополагающими в организации системы мер и весов. Именно эти моменты вечны и должны иметь государственную поддержку. С развитием рыночных отношений гарантией качества товаров должна стать репутация фирм-производителей, а метрология и стандартизация должны выполнять роль государственных научных и методических центров, в которых собраны наиболее точные средства измерения, наиболее перспективные технологии, и в которых работают самые квалифицированные специалисты.

В данной книге метрология рассматривается как область науки, в первую очередь физики, которая должны обеспечивать на государственном уровне единство измерений. Проще говоря, в науке должна существовать система, позволяющая представителям различных наук, например физики, химии, биологии, медицины, геологии и т.д., разговаривать на одном языке и понимать друг друга. Средствами достижения этого результата являются составные части метрологии: системы единиц, эталоны, стандартные образцы, справочные данные, терминология, теория погрешностей, система стандартов. Основам метрологии посвящена первая часть книги.

Вторая часть посвящена описанию принципов создания измерительной техники. Разделы этой части представлены так, как организованы виды измерений в системе Госстандарта РФ: механические, температурные, электрические и магнитные, оптические и физико-химические. Измерительная техника рассматривается как область непосредственного использования достижений метрологии.

Третья часть книги является кратким описанием сущности сертификации - области деятельности современных центров метрологии и стандартизации в нашей стране. Поскольку стандарты в разных странах разные, существует необходимость проверки всех аспектов международного сотрудничества (товаров, измерительной техники, услуг) на соответствие стандартам тех стран, где они используются.

Книга рассчитана на широкий круг специалистов, работающих с конкретными измерительными приборами в различных областях деятельности от торговли до контроля качества выполнения технологических процессов и измерений в экологии. В изложении опущены подробности некоторых разделов физики, не имеющие определяющего метрологического характера и доступные в специальной литературе. Большое внимание уделено физическому смыслу использования метрологического подхода к решению практических задач. Предполагается, что читатель знаком с основами физики и имеет хотя бы общие понятия о современных достижениях науки и техники, таких как лазерная техника, сверхпроводимость и т. п.

Книга рассчитана на специалистов, использующих те или иные приборы и заинтересованные в том, чтобы обеспечить необходимые им измерения оптимальным образом. Это студенты и аспиранты ВУЗов, которые специализируются в науках, опирающихся на измерения. Изложенный материал хотелось бы видеть в качестве связующего звена между курсами общенаучных дисциплин и специальными курсами по изложению сущности современных технологий производства.

Материал написан на основе курса лекций по метрологии и стандартизации, прочитанного автором в Санкт-Петербургском институте Московского государственного университета печати и в Санкт-Петербургском государственном университете. Это дало возможность скорректировать изложение материала, сделав его понятным для студентов различных специальностей от абитуриентов до студентов старших курсов.

Автор рассчитывает на соответствие материала основополагающим представлениям о метрологии и стандартизации на основании опыта личной работы в течение почти полутора десятилетий в Госстандарте СССР и Госстандарте РФ.

Загрузка...
Top