Презентация "информация и информационные процессы в неживой и живой природе". Информация и информационные процессы в живой и неживой природе (презентация) Презентация на тему информация в живой природе

Информация в неживой природе В физике, которая изучает неживую природу, информация является мерой упорядоченности системы по шкале «хаос порядок». Один из основных законов классической физики утверждает, что замкнутые системы, в которых отсутствует обмен веществом и энергией с окружающей средой, стремятся с течением времени перейти из менее вероятного упорядоченного состояния в наиболее вероятное хаотическое состояние.


Например, если в одну половину замкнутого сосуда поместить газ, то через некоторое время в результате хаотического движения молекулы газа равномерно заполнят весь сосуд. Произойдет переход из менее вероятного упорядоченного состояния в более вероятное хаотическое состояние, и информация, которая является мерой упорядоченности системы, в этом случае уменьшится. ПорядокХаос




Однако современная наука установила, что некоторые законы классической физики, справедливые для макротел, нельзя применять для микро- и мегамира. Согласно современным научным представлениям, наша Вселенная является динамически развивающейся системой, в которой постоянно происходят процессы усложнения структуры.


Таким образом, с одной стороны, в неживой природе в замкнутых системах идут процессы в направлении от порядка к хаосу (в них информация уменьшается). С другой стороны, в процессе эволюции Вселенной в микро- и мегамире возникают объекты со все более сложной структурой и, следовательно, информация, являющаяся мерой упорядоченности элементов системы, возрастает.


Согласно теории Большого взрыва, Вселенная образовалась около 15 миллиардов лет назад в результате взрыва «первоматерии». В первые мгновения материя существовала фактически в форме энергии, а затем на протяжении долей секунды начало образовываться вещество в форме элементарных частиц (электронов, протонов, нейтронов и др.).


В следующий миллион лет основные события развивались в микромире. Из разлетающихся во все стороны элементарных частиц образовывались атомы, т. е. из хаоса возникали системы с более сложной структурой. Сначала возникли атомы самых легких химических элементов (водорода и гелия), а затем и более тяжелых элементов.


В мегамире в течение последующих миллиардов лет под действием сил гравитационного притяжения из хаоса гигантских облаков пыли и газа формировались сложные структуры галактики. Наша Солнечная система, в которую входит планета Земля, образовалась около 5 миллиардов лет назад и вместе с сотнями миллионов других звезд образует нашу галактику Млечный Путь.






Информация в физике Информация (антиэнтропия) является мерой упорядоченности и сложности системы. По мере увеличения сложности системы величина энтропии уменьшается, и величина информации увеличивается. Процесс увеличения информации характерен для открытых, обменивающихся веществом и энергией с окружающей средой, саморазвивающихся систем живой природы.


Информация в живой природе Примерно 3,5 миллиарда лет назад на Земле возникла жизнь. С тех пор идет саморазвитие, эволюция живой природы, т. е. повышение сложности и разнообразия живых организмов. Живые системы (одноклеточные, растения и животные) являются открытыми системами, так как потребляют из окружающей среды вещество и энергию и выбрасывают в нее продукты жизнедеятельности также в виде вещества и энергии.


Живые системы в процессе развития способны повышать сложность своей структуры, т. е. увеличивать информацию, понимаемую как меру упорядоченности элементов системы. Так, растения в процессе фотосинтеза потребляют энергию солнечного излучения и строят сложные органические молекулы из «простых» неорганических молекул.


Животные подхватывают эстафету увеличения сложности живых систем, поедают растения и используют растительные органические молекулы в качестве строительного материала при создании еще более сложных молекул. Биологи образно говорят, что «живое питается информацией», создавая, накапливая и активно используя информацию.


Информационные сигналы. Нормальное функционирование живых организмов невозможно без получения и использования информации об окружающей среде. Целесообразное поведение живых организмов строится на основе получения информационных сигналов. Информационные сигналы могут иметь различную физическую или химическую природу. Это звук, свет, запах и др.




Выживание популяций животных во многом базируется на обмене информационными сигналами между членами одной популяции. Информационный сигнал может быть выражен в различных формах: позах, звуках, запахах и даже вспышках света (ими обмениваются светлячки и некоторые глубоководные рыбы).


Генетическая информация. Одной из основных функций живых систем является размножение, т. е. создание организмов данного вида. Воспроизведение себе подобных обеспечивается наличием в каждой клетке организма генетической информации, которая передается по наследству.


Генетическая информация представляет собой набор генов, каждый из которых «отвечает» за определенные особенности строения и функционирования организма. При этом «дети» не являются точными копиями своих родителей, так как каждый организм обладает уникальным набором генов, которые определяет различия в строении и функциональных возможностях.


Используемые ресурсы Угринович Н.Д. Информатика и информационные технологии.

Есть ли информация в неживой природе, если не брать во внимание разнообразную технику, созданную человеком? Ответ на этот вопрос зависит от определения самого понятия. Значение термина «информация» на протяжении истории человечества неоднократно дополнялось. На определение оказывало влияние на развитие научной мысли, прогресс технологий и накопленный веками опыт. Информация в неживой природе возможна, если рассматривать это явление с точки зрения общей терминологии.

Один из вариантов определения понятия

Информация в узком смысле — это сообщение, переданное в виде того или иного сигнала от человека к человеку, от человека к автомату или от автомата к автомату, а также в растительном и животном мире от особи к особи. При таком подходе ее существование возможно только в живой природе или в социотехнических системах. К ним в том числе можно отнести такие примеры информации в неживой природе в археологии, как наскальные рисунки, глиняные таблички и так далее. Носитель сведений в этом случае — предмет, явно не относящийся к живой материи или к технике, однако без помощи того же человека данные не были бы зафиксированы и сохранены.

Субъективный подход

Существует еще один способ субъективна по природе и возникает лишь в сознании человека, когда он наделяет окружающие его предметы, события и так далее неким смыслом. Эта идея имеет интересные логические следствия. Получается, если нет людей — нет и сведений, нигде, в том числе отсутствует и информация в неживой природе. Информатика в таком варианте определения становится наукой о субъективном, но не реальном мире. Впрочем, не будем глубоко зарываться в эту тему.

Общее определение

В философии информация определяется как нематериальная форма движения. Она присуща любому объекту, поскольку он обладает неким смыслом. Недалеко от этого определения уходит и физическое понимание термина.

Одно из основных понятий в научной картине мира — энергия. Ею обмениваются все материальные объекты, причем постоянно. Изменение первоначального состояния у одного из них вызывает изменения в другом. В физике подобный процесс рассматривается как передача сигнала. Сигнал, по сути, тоже сообщение, переданное одним предметом и полученное другим. Это и есть информация. Согласно подобному определению, ответ на заданный в начале статьи вопрос однозначно положительный. Информация в неживой природе — это разнообразные сигналы, передающиеся от одних объектов к другим.

Второй закон термодинамики

Более короткое и точное определение: информация — это мера упорядоченности системы. Тут стоит вспомнить один из Согласно второму началу термодинамики, замкнутые системы (это такие, которые не взаимодействуют никак с окружающей средой) всегда переходят из упорядоченного состояния в хаотичное.

Для примера проведем мысленный эксперимент: поместим в одной половине замкнутого сосуда газ. Через некоторое время он заполнит весь предоставленный объем, то есть перестанет быть упорядоченным в той мере, в какой был. При этом информация в системе уменьшится, поскольку она является мерой упорядоченности.

Информация и энтропия

Стоит отметить, что в современном понимании Вселенная не является замкнутой системой. Для нее характерны процессы усложнения структуры, сопровождающиеся повышением упорядоченности, а значит, и количества информации. Согласно теории Большого взрыва, так было с момента образования Вселенной. Первыми появились элементарные частицы, затем молекулы и более крупные соединения. Позже начали формироваться звезды. Все эти процессы характеризуются упорядочиванием структурных элементов.

С этими нюансами тесно связано прогнозирование будущего Вселенной. Согласно второму закону термодинамики, ее ожидает тепловая смерть в результате возрастания энтропии, величины, противоположной информации. Ее можно определить как меру неупорядоченности системы. гласит, что в замкнутых системах энтропия всегда растет. Однако современные знания не могут дать точного ответа на вопрос, насколько он применим ко всей Вселенной.

Особенности информационных процессов в неживой природе в замкнутой системе

Все примеры информации в неживой природе объединены общими особенностями. Это одноступенчатость процессов, отсутствие цели, потеря количества в источнике при возрастании в приемнике. Рассмотрим названные свойства подробнее.

Информация в неживой природе представляет собой меру свободой энергии. Другими словами, она характеризует способность системы совершить работу. При отсутствии внешнего воздействия каждый раз при совершении химической, электромагнитной, механической или другой работы происходит необратимая потеря свободной энергии, а вместе с ней и информации.

Особенности информационных процессов в неживой природе в открытой системе

При внешнем воздействии некая система может получить информацию или ее часть, потерянную другой системой. При этом в первой появится количество свободной энергии, достаточное, чтобы совершить работу. Хороший пример — намагничивание так называемых ферромагнетиков (веществ, способных при определенных условиях быть намагниченными при отсутствии внешнего магнитного поля). Они приобретают подобное свойства в результате удара молнии или же в присутствии других магнитов. Намагничивание при этом становится физическим выражением приобретения системой некоторого количества информации. Работу в данном примере будет осуществлять магнитное поле. в этом случае одноступенчатые и не имеют цели. Последнее свойство больше других отличает их от аналогичных явлений в живой природе. Отдельные фрагменты, например, процесса намагничивания не преследуют никаких глобальных целей. В случае живой материи такая цель есть — это синтез биохимического продукта, передача наследственного материала и так далее.

Закон невозрастания информации

Еще одна особенность в неживой природе заключается в том, что возрастание информации в приемнике всегда сопряжено с потерей ее в источнике. То есть в системе без внешнего воздействия количество информации никогда не увеличивается. Это положение является следствием закона неубывания энтропии.

Нужно отметить, что некоторые ученые рассматривают информацию и энтропию как тождественные понятия с обратным знаком. Первая представляет собой меру упорядоченности системы, а вторая — хаотичности. С такой точки зрения, информация становится отрицательной энтропией. Однако подобного мнения придерживаются далеко не все исследователи проблемы. Кроме того, следует отличать энтропию термодинамическую и информационную. Они являются частью разных научных знаний (физики и теории информации соответственно).

Информация в микромире

Изучает тему «Информация в неживой природе» 8 класс школы. Ученики к этому моменту еще мало знакомы с квантовой теорией в физике. Однако уже знают, что материальные объекты можно разделить на макро- и микромир. Последний представляет собой такой уровень материи, где существуют электроны, протоны, нейтроны и другие частицы. Здесь законы классической физики чаще всего неприменимы. Между тем информация существует и в микромире.

Не будем углубляться в квантовую теорию, но отметить несколько моментов все же стоит. В микромире как таковой энтропии не существует. Однако и на этом уровне при взаимодействии частиц происходят потери свободной энергии, той самой, которая необходима для совершения работы любой системой и мерой которой является информация. Если уменьшается свободная энергия, уменьшается и информация. То есть в микромире закон невозрастания информации также соблюдается.

Живая и неживая природа

Любые примеры информации в по информатике изучаемые в восьмом классе и не имеющее отношение к технике, объединены отсутствием цели, для достижения которой информация хранится, перерабатывается и передается. Для живой материи все иначе. В случае живых организмов существует основная цель и промежуточные. В итоге весь процесс получения, обработки, передачи и хранения информации необходим для передачи наследственного материала потомкам. Промежуточными целями является его сохранение при помощи самых разных биохимических и поведенческих реакций, к которым можно отнести, например, поддержание гомеостаза и ориентационное поведение.

Примеры информации в неживой природе говорят об отсутствии подобных свойств. Гомеостаз, кстати, минимизирует последствия закона невозрастания информации, который приводит к разрушению объекта. Наличие или отсутствие описанных целей — одно из главных отличий живой и неживой природы.

Итак, можно найти массу примеров на тему «информация в неживой природе»: картинки на стенах древних пещер, работа компьютера, рост кристаллов горного хрусталя и так далее. Однако, если не брать во внимание сведения, созданные человеком (различные изображения и тому подобное) и технику, объекты неживой природы сильно отличаются по свойствам информационных процессов, протекающих в них. Перечислим их еще раз: одноступенчатость, необратимость, отсутствие цели, неизбежная потеря информации в источнике при передаче ее приемнику. Информация в неживой природе определяется как мера упорядоченности системы. В замкнутой системе при отсутствии внешнего воздействия того или иного рода соблюдается закон невозрастания информации.

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Общепринятого определения информации не существует. Слово «информация» происходит от латинского слова information, что в переводе означает сведения, разъяснение, ознакомление. В наиболее общем случае под «информацией» понимаются сведения (данные), знания, которые воспринимаются живым существом или устройством и сообщаются (получаются, передаются, преобразуются, сжимаются, разжимаются, теряются, находятся, регистрируются) с помощью знаков. Что такое информация? Информатика – это наука о способах и методах представления, обработки, передачи и хранения информации с помощью ПК.

3 слайд

Описание слайда:

В наши дни человечество накопило огромное количество информации! Подсчитано, что общая сумма человеческих знаний до недавнего времени удваивалась каждые 50 лет. Сейчас объем информации удваивается через каждые два года. Источники информации

4 слайд

Описание слайда:

Мир вокруг нас полон всевозможных образов, звуков, запахов, и всю эту информацию доносят до сознания человека его органы чувств: зрение, слух, обоняние, вкус и осязание. С их помощью человек формирует свое первое представление о любом предмете, живом существе, произведении искусства, явлении и пр. Глазами люди воспринимают зрительную информацию; Органы слуха доставляют информацию в виде звуков; Органы обоняния позволяют ощущать запахи; Органы вкуса несут информацию о вкусе еды; Органы осязания позволяют получить тактильную информацию. Восприятие информации

5 слайд

Описание слайда:

Зрение – главный источник информации Наибольшее количество информации (около 90%) человек получает с помощью зрения, около 9% - с помощью слуха и только 1% - с помощью других органов чувств (обоняния, осязания и вкуса).

6 слайд

Описание слайда:

Люди, обмениваясь между собой информацией, постоянно должны задавать себе вопросы: понятна, актуальна и полезна ли она для окружающих, достоверны ли полученные сведения. Это позволит лучше понять друг друга, найти правильное решение в любой ситуации. В повседневной жизни от свойств информации часто зависят жизнь и здоровье людей, экономическое развитие общества. Социально значимые свойства информации

7 слайд

Описание слайда:

в знаковой письменной символьную в виде текста, чисел, различных символов (текст учебника); графическую (географическая карта); табличную (таблица по физике); в виде жестов или сигналов (светофор); устной словесной (разговор). Информацию можно представить в различной форме:

8 слайд

Описание слайда:

Человеческий разум является совершенным инструментом познания окружающего мира. А память человека – великолепным устройством для хранения информации. Однако для долговременного хранения информации, ее накопления и передачи из поколения в поколение необходимо иметь возможность ее хранить не только в памяти человека. Для этого используются внешние носители информации: узелки на веревках, зарубки на палках, берестяные грамоты, письма на папирусе, бумаге. Наконец, был изобретен типографский станок, и появились книги. Поиск надежных и доступных способов хранения информации идет и по сей день. Хранение информации

9 слайд

Описание слайда:

Информация и информационные процессы в неживой природе В замкнутых системах идут процессы в направлении от порядка к хаосу (уменьшение информации). В разомкнутых системах в результате эволюционных процессов создаются объекты сложной структуры (информация увеличивается). Порядок Хаос Уменьшение информации Порядок Хаос Увеличение информации

10 слайд

Описание слайда:

порядок хаос уменьшение информации В физике информация является мерой упорядоченности системы по шкале «хаос-порядок» Например, если в одну половину замкнутого сосуда поместить газ, то через некоторое время в результате хаотического движения молекулы газа равномерно заполнят весь сосуд.

11 слайд

Описание слайда:

Мир Макромир Микромир Мегамир Вселенная динамически развивается увеличение информации Мы живем в макромире, который состоит из объектов, по своим размерам сравнимых с человеком. Молекулы, атомы, элементарные частицы Вселенная, млечный путь, солнечная система, Земля

12 слайд

Описание слайда:


1. Информационные процессы. 2. Информационные процессы в природе. 3. Человек как информационный процессор. Восприятие, запоминание и обработка информации человеком, пределы чувствительности и разрешающей способности органов чувств, логарифмические шкалы восприятия. 4. Информационные процессы в технических устройствах. Основные вопросы темы:




Информационный процесс Информация не существует сама по себе. Она проявляется в информационных процессах. Информация не существует сама по себе. Она проявляется в информационных процессах. Процесс – последовательная смена состояний объекта в результате произведенных действий. Процесс – последовательная смена состояний объекта в результате произведенных действий.


Информационный процесс Процессы, цель которых найти, передать, сохранить или изменить информацию, называют информационными процессами Процессы, цель которых найти, передать, сохранить или изменить информацию, называют информационными процессами А А носитель В В






Генетическая информация Во многом определяет строение и развитие живых организмов и передается по наследству. Хранится генетическая информация в структуре молекул ДНК. Молекулы ДНК состоят из четырех различных составляющих (нуклеотидов), которые образуют генетический алфавит. Во многом определяет строение и развитие живых организмов и передается по наследству. Хранится генетическая информация в структуре молекул ДНК. Молекулы ДНК состоят из четырех различных составляющих (нуклеотидов), которые образуют генетический алфавит.




ВОПРОС 3. Человек как информационный процессор. Восприятие, запоминание и обработка информации человеком, пределы чувствительности и разрешающей способности органов чувств, логарифмические шкалы восприятия. Человек как информационный процессор. Восприятие, запоминание и обработка информации человеком, пределы чувствительности и разрешающей способности органов чувств, логарифмические шкалы восприятия.





Человек получает информацию о внешнем мире с помощью своих органов чувств. Человек получает информацию о внешнем мире с помощью своих органов чувств. около 90% информации человек получает при помощи органов зрения (визуальный), около 90% информации человек получает при помощи органов зрения (визуальный), примерно 9% – при помощи органов слуха (аудиальный) примерно 9% – при помощи органов слуха (аудиальный) и только 1% при помощи остальных органов чувств (обоняния, вкуса, осязания). и только 1% при помощи остальных органов чувств (обоняния, вкуса, осязания). Следует отметить, что органы чувств человека получили название анализаторов, поскольку именно через эти органы информация попадает в головной мозг. А вот, например, для лисы, собаки и многих других животных основная информация та, которая поступает через нос. У них хорошо развито обоняние. Для летучих мышей главная информация – звуковая, они воспринимают ее своими большими, чуткими ушами.




Закон Вебера-Фехнера: ощущение изменяется пропорционально логарифму раздражителя. Человеческие органы чувств (во всяком случае зрение и слух) обладают одной логарифмической шкалой чувствительности. Это следует из того что органы чувств воспринимают изменение сигнала (светового или акустического) пропорционально текущему уровню сигнала. В покое, тишине или темноте мы можем различить малейший шорох или пучок света в несколько фотонов. Но в тоже самое время на свету или в шумном помещении восприимчивость органов чувств резко падает. Это легко выразить математически: dA = dx/х, где А - наша восприимчивость к сигналу х Отсюда A = ln(x) (коэффициент пропорциональности опущен).


Уровень громкости звука принято измерять в децибелах (дБ). Чувствительность человеческого уха соответствует логарифмической шкале, поэтому децибел определяется таким образом, что увеличение звука на десять децибел соответствует десятикратному увеличению энергии звука, а на слух звук становится в два раза громче. При прочих равных условиях человеческое ухо по- разному воспринимает звуки различной частоты. Один дБ - это наименьшее различаемое на слух изменение громкости звука (= 1 фон). Наши органы слуха не воспринимают звуки слабее 0 дБ, а болевой порог составляет около 120 дБ. Уровень громкости звука принято измерять в децибелах (дБ). Чувствительность человеческого уха соответствует логарифмической шкале, поэтому децибел определяется таким образом, что увеличение звука на десять децибел соответствует десятикратному увеличению энергии звука, а на слух звук становится в два раза громче. При прочих равных условиях человеческое ухо по- разному воспринимает звуки различной частоты. Один дБ - это наименьшее различаемое на слух изменение громкости звука (= 1 фон). Наши органы слуха не воспринимают звуки слабее 0 дБ, а болевой порог составляет около 120 дБ.




ОБМЕН ИНФОРМАЦИИ ХРАНЕНИЕ ИНФОРМАЦИИ ОБРАБОТКА ИНФОРМАЦИИ содержит два момента: прием информации и передача. Прием (восприятие) человеком информации м ожет происходить как в образной, так и в знаковой форме. Передача - чаще всего в знаковой форме на каком- либо языке. осуществляется человеком либо в памяти (оперативная информация), либо на внешних носителях (внешняя). В качестве примеров можно привести сохранение информации на доске, в тетради, на кассетах и т.д. В памяти человека информация может храниться в любой форме, на внешних носителях - только в знаковой. производится человеком "в уме", либо с использованием различных технических средств (измерительных приборов, калькуляторов, компьютеров и т.п.) Образная форма связана с наличием у человека пяти органов чувств: зрение, слух, вкус, обоняние и осязание. ОБРАЗНАЯ ФОРМА - это идеальная форма восприятия человеком предметов и явлений окружающего материального мира. ЗНАКОВАЯ ФОРМА тесно связана с понятием языка. ЯЗЫК - знаковая система представления информации, это средство обмена информацией.







Сигнал – способ передачи информации. Сигнал – физический процесс, имеющий информационное значение. Он может быть непрерывным или дискретным. Сигнал – физический процесс, имеющий информационное значение. Он может быть непрерывным или дискретным. Аналоговый сигнал – сигнал, непрерывно изменяющийся по амплитуде и во времени (плавно меняющееся напряжение, ток или температура). Аналоговый сигнал – сигнал, непрерывно изменяющийся по амплитуде и во времени (плавно меняющееся напряжение, ток или температура). Сигнал называется дискретным, если он может принимать лишь конечное число значений в конечном числе моментов времени (дискретный – не непрерывный). Сигнал называется дискретным, если он может принимать лишь конечное число значений в конечном числе моментов времени (дискретный – не непрерывный).


Сигналы, несущие текстовую, символическую информацию, дискретны. Аналоговые сигналы используют, например, в телефонной связи, радиовещании, телевидении. Дискретные сигналы Сигналы светофора Сигналы светофора Сигналы, несущие текстовую информацию (буквы, слова, предложения, символы) Сигналы, несущие текстовую информацию (буквы, слова, предложения, символы) Телеграфная азбука Морзе Аналоговые сигналы Изменение скорости автомобиля Изменение скорости автомобиля Влажность воздуха Влажность воздуха Напряжение, развиваемое микрофоном при разговоре перед ним, пении или игре на музыкальных инструментах Напряжение, развиваемое микрофоном при разговоре перед ним, пении или игре на музыкальных инструментах Кардиограмма Кардиограмма


Аналоговые сигналы могут быть представлены в дискретном (цифровом) виде. Поясним это на примере. На рисунке изображена температурная кривая, вычерченная термометром – самописцем, 15 июля на берегу реки Цны. Рассматривая график, можно сделать вывод о том, что температура за сутки изменилась от +1200С до +2400С. Можно ли эту информацию, полученную в непрерывной (аналоговой) форме, представить в виде отдельных значений, таблицей, т. е. в дискретной форме? Занесем в таблицу значения температуры на конец каждого часа. Легко заметить, что таблица дает неточную картину процесса: например, самая высокая температура достигнута между 14 и 15 часами. Ясно, что таблицу можно улучшить, если занести в нее значения температуры, наблюдаемые каждые полчаса. Час 1 2 … …24 t C 15 12,3 … 21, …16 t C 15 12,3 … 21, …16 Выбор временного интервала называют временным шагом дискретизации, а сам процесс представления какой-либо величины в виде последовательного ряда ее отдельных (дискретных) значений называют дискретизацией.


Сигналы, передаваемые в электрической форме, обладают множеством достоинств: не требуют движущихся механических устройств, медленных и подверженных поломкам; не требуют движущихся механических устройств, медленных и подверженных поломкам; скорость передачи электрических сигналов приближается к максимально возможной скорости света; скорость передачи электрических сигналов приближается к максимально возможной скорости света; электрические сигналы легко обрабатывать, сравнивать и преобразовывать с помощью электронных устройств, отличающихся чрезвычайно высоким быстродействием. электрические сигналы легко обрабатывать, сравнивать и преобразовывать с помощью электронных устройств, отличающихся чрезвычайно высоким быстродействием.




Наблюдение Общение Чтение Просмотр прослушивание работа в библиотеках, архивах; Запррос к информационным системам, базам и банкам данных; другие методы. Наблюдение Общение Чтение Просмотр прослушивание работа в библиотеках, архивах; Запррос к информационным системам, базам и банкам данных; другие методы. Ручной Автоматизиро- ванный Ручной Автоматизиро- ванный Методы поиска Поиск информации – это извлечение хранимой информации.


Занесение новых записей в телефонную книжку Сбор насекомых для коллекции Ежедневное измерение температуры воздуха и т.д. Решение любой задачи начинается со сбора информации. Занесение новых записей в телефонную книжку Сбор насекомых для коллекции Ежедневное измерение температуры воздуха и т.д. Решение любой задачи начинается со сбора информации.




Источник Приемник Органы чувств – биологические каналы человека Технические каналы связи: телефон, радио и др. Характеристики: скорость передачи, пропускная способность, защита от шума Точное или приближенное воспроизведение полученной информации в каком-либо другом месте называется передачей информации. КУ ДКУ Помехи, шум Канал связи


Канал связи - совокупность технических устройств, обеспечивающих передачу сигнала от источника к получателю. Кодирующее устройство (КУ)- устройство, предназначенное для преобразования исходного сообщения источника информации к виду удобному для передачи. Декодирующее устройство (ДКУ) - устройство для преобразования кодированного сообщения в исходное.


Обработка Без применения технических средств («в уме») Без применения технических средств («в уме») С применением технических средств (в т.ч. на ПК) С применением технических средств (в т.ч. на ПК) Виды обработки: математические вычисления; логические рассуждения; поиск; структурирование; кодирование. Правила обработки: алгоритмы Виды обработки: математические вычисления; логические рассуждения; поиск; структурирование; кодирование. Правила обработки: алгоритмы -преобразование информации из одного вида в другой, осуществляемое по строгим формальным правилам.


ВХОДНАЯ И ВЫХОДНАЯ ИНФОРМАЦИЯ Входная информация - информация об объектах, которую получает человек или устройство. Выходная информация - информация, которая получается в результате преобразования человеком или устройством входной информации. Входная информация Выходная информация Методы защиты Защитой информации называется предотвращение: доступа к информации лицам, не имеющим соответствующего разрешения (несанкционированный, нелегальный доступ); непредумышленного или недозволенного использования, изменения или разрушения информации. Защитой информации называется предотвращение: доступа к информации лицам, не имеющим соответствующего разрешения (несанкционированный, нелегальный доступ); непредумышленного или недозволенного использования, изменения или разрушения информации.

Загрузка...
Top