Протеолитические ферменты и дезоксирибонуклеаза используются для лечения гнойных ран. Каталитические реакции: примеры. Гомогенный и гетерогенный катализ Какие витамины следует назначить больному с гипоэнергетическим состоянием, вызванным сердечно-сосудист

Объясните, почему протеолитические ферменты и дезоксирибонуклеаза используются для лечения гнойных ран:

а) Какие реакции катализируют эти ферменты

б) Как изменится вязкость гнойного содержимого, если она зависит от концентрации макромолекул в его составе

в) Можно ли для очищения ран от гноя использовать пепсин, а также коллагеназу и гиалуронидазу.

а) Протеолитические ферменты расщепляют пептидные связи, образованные определёнными аминокислотами. К протеолитическим ферментам относятся пепсин, трипсин, химотрипсин.

Пепсин, химотрипсин, трипсин являются эндопептидазами, то есть действуют на пептидные связи, удалённые от концов пептидной цепи.

Дезоксирибонуклеаза (ДНК-аза) и рибонуклеаза (РНК-аза) панкреатического сока принимают участие в расщеплении нуклеиновых кислот. Они являются эндонуклеазами и гидролизуют макромолекулы до олигонуклеотидов.

б) Так как вязкость гнойного содержимого зависит от концентрации макромолекул в его составе, значит при дейсвтии протеолитических ферментов и ДНК-азы вязкость уменьшится.

в) Пепсин не используется для лечения гнойных ран, так как оптимум pH пепсина равен 1,0-2,5, что соответствует pH желудка, поэтому пепсин используется в зместительной энзимотерапии при ахимии, гипо- и -анацидных гастритах.

Протеолитические ферменты (трипсин, химотрипсин) применяют при местном воздействии для обработки гнойных ран с целью расщепления белков погибших клеток, для удаления сгустков крови или вязких секретов при воспалительных заболеваниях дыхательных путей (pH ~7,0).

Ферментные препараты РНК-азу и ДНК-азу используют в качестве противовирусных препаратов при лечении аденовирусных конъюнктивитов.

Гиалуронидазу нельзя использовать для очищения ран от гноя. Она разрушает полисахаридные цепи. Из внеклеточного пространства гликозаминогликаны поступают в клетку по механизму эндоцитоза и заключаются в эндоцитозные пузырьки, которые затем сливаются с лизосомами. Лизосомальные гидролазы обеспечивают постепенное полное расщепление гликозаминогликанов до мономеров. В результате микроорганизмы попадают в межклеточное вещество, а затем в ткани организма, что приводит к гнойной инфекции. Гиалуронидаза используется для рассасывания рубцов подкожно и внутримышечно.

Коллагеназа используется в медицинской практике для лечения ожоговой болезни в хирургии и для лечения гнойных заболеваний глаз в офтальмологии. Существует два типа коллагеназ: 1. Тканевая коллагеназа участвует в катаболизме коллагена. 2. Бактериальная коллагеназа синтезируется некоторыми микроорганизмами. Расщепляет пептидную цепь коллагена более чем в 200 местах. Разрушаются соединительнотканные барьеры в организме человека, что обеспечивает инвазию микроорганизма и способствует возникновению и развитию газовой гангрены. Сам возбудитель не содержит коллагена и, поэтому не подвержен действию коллагеназы.

и подростковая гинекология

и доказательная медицина

и медицинскому работнику

Обратите внимание!

С 16:00 до 02:00 - 800 р/час.

Заметки на полях

Объясните почему реакции катализируемые ферментами зависят от ph

и подростковая гинекология

и доказательная медицина

и медицинскому работнику

Ферменты, будучи белками, обладают рядом характерных для этого класса органических соединений свойств, отличающихся от свойств неорганических катализаторов.

Таким образом, термолабильность, или чувствительность к повышению температуры, является одним из характерных свойств ферментов, резко отличающих их от неорганических катализаторов. В присутствии последних скорость реакции возрастает экспоненциально при повышении температуры (см. рис. 51).

Зависимость активности ферментов от pH среды

Из табл. 17 видно, что рН-оптимум действия ферментов лежит в пределах физиологических значений. Исключение составляет пепсин, pH-оптимум которого равен 2,0 (при pH 6,0 он не активен и не стабилен). Объясняется это функцией пепсина, поскольку в желудочном соке содержится свободная соляная кислота, создающая среду примерно этого значения pH. С другой стороны, pH-оптимум аргиназы лежит в сильно щелочной зоне (около 10,0); такой среды нет в клетках печени, следовательно, in vivo аргиназа функционирует, по-видимому, не в своей оптимальной зоне pH среды.

Ферменты обладают высокой специфичностью действия. По этому свойству они часто существенно отличаются от неорганических катализаторов. Так, мелкоизмельченные платина и палладий могут катализировать восстановление (с участием молекулярного водорода) десятков тысяч химических соединений различной структуры. Высокая специфичность ферментов обусловлена, как было упомянуто выше, конформационной и электростатической комплементарностью между молекулами субстрата и фермента и уникальной структурой активного центра фермента, обеспечивающими узнавание, высокое сродство и избирательность протекания одной какой-либо реакции из тысячи других химических реакций, осуществляющихся одновременно в живых клетках.

Абсолютной специфичностью действия называют способность фермента катализировать превращение только единственного субстрата. Любые изменения (модификации) в структуре субстрата делают его недоступным для действия фермента. Примером таких ферментов могут служить аргиназа, расщепляющая в естественных условиях (в организме) аргинин, уреаза, катализирующая распад мочевины, и др. (см. Обмен простых белков).

Факторы, определяющие активность ферментов

Здесь будут кратко рассмотрены факторы, определяющие скорость реакций, катализируемых ферментами, и более подробно будут изложены вопросы об активировании и ингибировании действия ферментов.

Следует учитывать, кроме того, значение скорости обратной реакции, которая может оказаться более существенной при повышении концентрации продуктов ферментативной реакции. Учитывая эти обстоятельства, при исследовании скорости ферментативных реакций в тканях и биологических жидкостях обычно определяют начальную скорость реакции в условиях, когда скорость ферментативной реакции приближается к линейной (в том числе при достаточно высокой для насыщения концентрации субстрата).

ВЛИЯНИЕ КОНЦЕНТРАЦИИ СУБСТРАТА И ФЕРМЕНТА

НА СКОРОСТЬ ФЕРМЕНТАТИВНОЙ РЕАКЦИИ

Скорость любой ферментативной реакции непосредственно зависит от концентрации фермента. На рис. 55 представлена зависимость между скоростью реакции и повышающимися количествами фермента в присутствии избытка субстрата. Видно, что между этими величинами существует линейная зависимость, т. е. скорость реакции пропорциональна количеству присутствующего фермента.

Обратите внимание! Диагностика и лечение виртуально не проводятся! Обсуждаются только возможные пути сохранения вашего здоровья.

Стоимость 1 часа - 500 руб. (с 02:00 до 16:00, время московское)

С 16:00 до 02:00 - 800 р/час.

Реальный консультативный прием ограничен.

Ранее обращавшиеся пациенты могут найти меня по известным им реквизитам.

Заметки на полях

Остался неоцифрованным 3-й том МКБ. Желающие оказать помощь могут заявить об этом на нашем форуме

В настоящее время на сайте готовится полная HTML-версия МКБ-10 - Международной классификации болезней, 10-я редакция.

Желающие принять участие могут заявить об этом на нашем форуме

Уведомления об изменениях на сайте можно получить через раздел форума Компас здоровья - Библиотека сайта Островок здоровья

Выделенный текст будет отправлен редактору сайта.

не должна использоваться для самостоятельной диагностики и лечения, и не может служить заменой очной консультации врача.

Администрация сайта не несёт ответственности за результаты, полученные в ходе самолечения с использованием справочного материала сайта

Перепечатка материалов сайта разрешается при условии размещения активной ссылки на оригинальный материал.

© 2008 blizzard. Все права защищены и охраняются законом.

http://bono-esse.ru/blizzard/A/Chimia/Bio_chinija/Osnovnye_svojstva_fermentov.html

7.5. Изменение активности ферментов в зависимости от условий среды.

Влияние температуры . Ферментативные реакции могут происходить в интервале температур от 0 о С (точка замерзания воды) до 70-80 о С (тепловая денатурация белков высших организмов). При повышении температуры увеличиваются скорости химических реакций, в том числе и скорость образования фермент–субстратных комплексов, поэтому активность ферментов возрастает, вследствие чего происходит интенсификация процессов жизнедеятельности растений.

Однако в негидратированном (сухом) состоянии белки способны сохранять нативные свойства и при более высокой температуре, что используется в технологиях быстрого высушивания зерна и семян, без снижения их всхожести. Не происходит необратимой инактивации ферментов также и при замораживании растительных тканей. При понижении температуры ниже точки замерзания физиологической среды прекращается действие ферментов, однако при повышении температуры их каталитическая активность восстанавливается.

Влияние концентрации фермента и субстрата . Если в физиологической среде содержится много субстрата и мало ферментного белка, то скорость превращения субстрата в продукты реакции будет низкой, так как каждая молекула фермента способна катализировать превращение определенного количества субстрата в единицу времени. При увеличении числа ферментных молекул (т.е. концентрации фермента) в среде скорость ферментативной реакции будет возрастать до тех пор, пока достаточно субстрата для полной реализации молярной активности фермента. При дальнейшем увеличении концентрации фермента скорость реакции уже не возрастает. Следовательно, скорость ферментативной реакции пропорционально зависит от количества фермента в среде только при высокой концентрации субстрата.

Зависимость скорости ферментативной реакции (V) от концентрации субстрата может быть выражена уравнением:

Константа Михаэлиса выражает сродство фермента к субстрату и является важной характеристикой ферментного белка. Чем меньше константа Михаэлиса, тем выше молярная активность фермента и тем интенсивней происходит ферментативный катализ. Из приведенного выше уравнения можно определить значение константы Михаэлиса:

Km = [S] (¾¾ – 1); при V = ¾¾ Km = [S]

Следовательно константа Михаэлиса численно равна концентрации субстрата, при которой скорость реакции, катализируемой ферментом, достигает половину от максимальной.

Активаторы ферментов . Для поддержания молекулы фермента в активном состоянии необходимо наличие в среде определенных ионов и некоторых других соединений, называемыхактиваторами ферментов. Роль активаторов заключается в том, что они способны переводить в активное состояние определенные группировки в каталитическом центре молекулы фермента и таким образом участвовать в каталитическом действии ферментного белка. Так, например, протеолитические ферменты, катализирующие гидролитическое расщепление белков, активируютсяHCN,H 2 S, а также веществами, содержащими сульфгидрильные группы (восстановленный глютатион, цистеин).

На каталитическую активность ферментов оказывает влияние ионный состав среды, способствующий формированию молекулами фермента и субстрата специфической пространственной структуры, которая позволяет этим молекулам активно взаимодействовать, в результате увеличивается скорость образования фермент-субстратного комплекса и в целом происходит ускорение ферментативной реакции.

Известны также ферменты, активность которых повышается в присутствии неорганических анионов: Cl‾,Br‾,I‾,H 2 PO 4 ‾ , НСО 3 ‾ и др. Так, активаторами амилаз, катализирующих гидролиз крахмала, являются ионы галогенов.

Таким образом, для проявления максимальной активности ферментов необходимо наличие в физиологической среде, в которой функционирует фермент, определенного набора специфических активаторов, содержащихся в оптимальной концентрации.

При обратимом ингибировании не происходит безвозвратной потери каталитической активности фермента, так как ингибитор не разрушает пространственной структуры ферментного белка и после отделения ингибитора от фермента активность последнего восстанавливается. Различают два вида ингибиторов, вызывающих обратимое ингибирование, -конкурентные инеконкурентные ингибиторы.

Следует отметить, что конкурентные ингибиторы не являются полными структурными аналогами субстрата, так как для связывания с ферментным белком ингибитору вполне достаточно, если он будет структурно совместим хотя бы с одним из участков связывания субстрата в активном центре фермента, а другая часть молекулы ингибитора может существенно отличаться от молекулы субстрата.

Хорошо изученный пример конкурентного ингибирования – действие малоновой кислоты на фермент сукцинатдегидрогеназу, катализирующий отщепление водорода от янтарной кислоты в цикле ди- и трикарбоновых кислот:

СН 2 СООН сукцинатдегидрогеназа СНСООН ½

янтарная кислота фумаровая кислота малоновая кислота

Фермент рибулозодифосфаткарбоксилаза, катализирующий присоединение СО 2 к первичному акцептору в цикле Кальвина (см. стр…), подвергается конкурентному ингибированию повышенной концентрацией О 2 . Кислород представляет собой структурный аналог СО 2 , поэтому может связываться с активным центром рибулозодифосфаткарбоксилазы и действует в этом случае как конкурентный ингибитор.

Неконкурентные ингибиторы не имеют структурной аналогии с субстратами и поэтому взаимодействуют не с участком связывания субстрата в активном центре фермента, а с другим участком ферментной молекулы, вызывая инактивацию каталитического центра. При этом ингибитор не вступает в конкурентное взаимодействие с субстратом и не препятствует связыванию субстрата в активном центре фермента, однако молекула субстрата не подвергается превращению, так как под влиянием ингибитора становятся неактивными группировки фермента, которые активируют субстрат. Поскольку при неконкурентном ингибировании субстрат и ингибитор связываются с разными участками молекулы фермента, действие такого ингибитора не ослабляется при увеличении концентрации субстрата в физиологической среде.

В процессе необратимого ингибирования молекула ингибитора образует прочную ковалентную связь с одной из группировок в активном центре фермента, в результате чего становится невозможным его каталитическое действие. В связи с тем, что образовавшееся соединение ингибитора с ферментом не разрушается и не диссоциирует в условиях физиологической среды, в которой функционирует фермент, то каталитическая активность фермента подавляется необратимо.

Фермент–SH + X–R ¾® фермент–S–R + HX,

где Х – атомы галогенов (Cl,I,Br,F).

Фосфорорганические соединения необратимо ингибируют ферменты, имеющие в активном центре гидроксильные группы аминокислоты серина. Взаимодействие одного из таких ингибиторов диизопропилфторфосфата с ферментом можно представить в виде следующей реакции:

В результате присоединения к молекуле фермента фосфорорганического радикала происходит блокирование активного центра фермента и очень сильное подавление его каталитической активности.

Все ферменты необратимо ингибируются катионами тяжелых металлов (Hg 2+ ,Pb 2+ ,Ag + , и мышьякаAs +), а также галогенопроизводными уксусной кислоты (трихлоруксусная, иодуксусная кислоты и др.), которые при соединении с сульфгидрильными группами (-SH) ферментного белка образуют нерастворимые соединения. Следует отметить, что все факторы, вызывающие денатурацию белков, неспецифически подавляют действие любого фермента, так как основу его составляет молекула белка.

Белковые ингибиторы эндогенные действия образуют неактивные комплексы с ферментами собственного организма и таким образом участвуют в регулировании определенных биохимических процессов в тканях и органах растений. Так, например, в процессе созревания зерновок злаковых растений в них усиливается синтез белковых ингибиторов амилаз и протеаз, катализирующих соответственно гидролиз крахмала и запасных белков, вследствие чего к концу созревания зерновок большая часть указанных ферментов связывается с белками – ингибиторами. Благодаря такому действию ингибиторов происходит накопление в зерне крахмала и запасных белков.

Для продолжения скачивания необходимо собрать картинку.

Введение…………………………………………………………………………….2

Видные деятели химии о катализе………………………………………5

Немного о промышленном катализе………………………………….7

Роль катализа в экологии………………………………………………….11

Энергетический барьер……………………………………………………..12

Прохождение через энергетический барьер……………………….14

Гомогенный катализ…………………………………………………………17

Гетерогенный катализ………………………………………………………19

Катализ в биохимии…………………………………………………………20

Приложения(графики и схемы)……………………………………….22-25

Список литературы………………………………………………………….26

Введение.

КАТАЛИЗ - процесс, заключающийся в изменении скорости химических реакций в присутствии веществ, называемых катализаторами.

Катализаторы – вещества, изменяющие скорость химической реакции, которые могут участвовать в реакции, входить в состав промежуточных продуктов, но не входят в состав конечных продуктов реакции и после окончания реакции остаются неизменными.

Каталитические реакции – реакции, протекающие в присутствии катализаторов.

Положительным называют катализ, при котором скоость реакции возрастает, отрицательным (ингибированием) – при котором она убывает. Примером положительного катализа может служить процесс окисления аммиака на платине при получении азотной кислоты. Примером отрицательного – снижение скорости коррозии при введении в жидкость, в которой эксплуатируется металл, нитрита натрия, хромата и дихромата калия.

Катализаторы, замедляющие химическую реакцию, называются ингибиторами .

В зависимости от того, находится катализатор в той же фазе, что и реагирующие вещества, или образует самостоятельную фазу, говорят о гомогенном или гетерогенном катализе.

Примером гомогенного катализа является разложение пероксида водорода в присутствии ионов йода. Реакция протекает в две стадии:

Н О + I = H O + IO

Н O + IO = Н O + O + I

При гомогенном катализе действие катализатора связано с тем, что он вступает во взаимодействие с реагирующими веществами с образованием промежуточных соединений, это приводит к снижению энергии активации.

При гетерогенном катализе ускорение процесса обычно происходит на поверхности твердого тела – катализатора, поэтому активность катализатора зависит от величины и свойств его поверхности. На практике катализатор обычно наносят на твердый пористый носитель. Механизм гетерогенного катализа сложнее, чем у гомогенного.

Механизм гетерогенного катализа включает пять стадий, причем все они обратимы.

1. Диффузия реагирующих веществ к поверхности твердого вещества.

2. Физическая адсорбция на активных центрах поверхности твердого вещества реагирующих молекул и затем хемосорбция их.

3. Химическая реакция между реагирующими молекулами.

4. Десорбция продуктов с поверхности катализатора.

5. Диффузия продукта с поверхности катализатора в общий поток.

Примером гетерогенного катализа является окисление SO в SO на катализаторе V O при производстве серной кислоты (контактный метод).

Промоторы (или активаторы) – вещества, повышающие активность катализатора. При этом промоторы могут сами и не обладать каталитическими свойствами.

Каталитические яды – посторонние примеси в реакционной смеси, приводящие к частичной или полной потере активности катализатора. Так, следы мышьяка, фосфора вызывают быструю потерю катализатором V O активности (контактный метод производства H SO).

Многие важнейшие химические производства, такие, как получение серной кислоты, аммиака, азотной кислоты, синтетического каучука, ряда полимеров и др., проводятся в присутствии катализаторов.

Биохимические реакции в растительных и животных организмах ускоряются биохимическими катализаторами – ферментами.

Скорость процесса – чрезвычайно важный фактор, определяющий производительность оборудования химических производств. Поэтому одна из основных задач, поставленных перед химией научно-технической революцией, это поиск путей увеличения скорости реакций. Другая важ- ная задача современной химии, обусловленная резко возрастающими масштабами производства химических продуктов,- повышение избирательности химических превращений в полезные продукты, уменьшение количества выбросов и отходов. С этим связана, кроме того, и охрана окружающей среды и более рациональное использование истощающихся, к сожалению, природных ресурсов.

Для достижения всех этих целей нужны верные средства, и такими средствами служат прежде всего катализаторы. Однако изыскивать их не так просто. B процессе познания внутреннего устройства окружающих нас вещей ученые установили определенную градацию, иерархию уровней микромира. Мир, описываемый в нашей книге,- это мир молекул, взаимные превращения которых составляют предмет химии. Нас будет интересовать не вся химия, а только часть ее, посвященная изучению динамики изменения химической структуры молекул. Видимо нет надобности говорить о том, что молекулы построены из атомов, а последние- из ядра и окружающей его электронной оболочки; что свойства молекул зависят от природы составляющих их атомов и последовательности соединения их друг с другому что химические и физические свойства веществ зависят от свойств молекул и характера их взаимосвязи. Будем считать, что все это в общих чертах известно читателю, и потому главный упор сделаем на вопросах, связанных с представлением о скорости химических реакций.

Взаимные превращения молекул протекают с самой различной скоростью. Скорость можно изменять, нагревая или охлаждая смесь реагирующих молекул. При нагревании скорость реакции, как правило, возрастает, но это не единственное средство ускорения химических превращений. Существует еще один, более эффективный способ – каталитический, широко используемый в наше время в производстве самых разнообразных продуктов.

Первые научные представления о катализе возникли одновременно с развитием атомной теории строения вещества. В 1806 г., через год после того, как один из создателей современной атомистической теории Дальтон сформулировал в «Записках Манчестерского литературного и философского общества» закон кратных отношений, Клеман и Дезорм опубликовали подробные данные об ускорении процесса окисления сернистого газа в присутствии окислов азота при камерном производстве серной кислоты. Шесть лет спустя в «Технологическом журнале» Кирхгоф изложил результаты своих наблюдений об ускоряющем действии разбавленных минеральных кислот на гидролиз крахмала до глюкозы. Этими двумя наблюдениями была открыта эпоха экспериментального изуче- ния необычных для того времени химических явлений, которым шведский химик Берцелиус дал в 1835 г. общее название «катализ» от греческого слова «каталоо» – разрушать. Такова, в двух словах, история открытия ка- тализа, который с полным основанием следует отнести к одному из фундаментальных явлений природы.

Теперь нам следует дать современное и наиболее общепринятое определение катализа, а затем и некоторую общую классификацию каталитических процессов, так как именно с этого начинается любая точная наука. Как известно, «физика – это то, чем занимаются физики (то же самое можно сказать и о химии)». Следуя этому наставлению Бергмана, можно было бы ограничиться утверждением, что «катализ – это то, чем занимаются и химики и физики». Но, естественно, такого шутливого объяснения недостаточно, и со времен Берцелиуса давалось множество научных определений понятию «катализ». На наш взгляд наилучшее определение сформулировано Г. К. Вересковым: «Феноменологически катализ можно определить как возбуждение химических реакций или изменение их скорости под действием веществ – катализаторов, многократно вступающих в промежуточные химические взаимодействия с участниками реакции и восстанавливающих после каждого цикла промежуточных взаимодействий свой химический состав».

Самое странное в этом определении его заключительная часть – вещество, ускоряющее химический процесс, не расходуется. Если нужно ускорить движение тяжелого тела, его подталкивают и, следовательно, затрачивают на это энергию. Чем больше потрачено энергии, тем большую скорость приобретает тело. В идеальном случае количество затраченной энергии будет точно равно приобретенной телом кинетической энергии. В этом проявляется фундаментальный закон природы – сохранение энергии.

Видные деятели химии о катализе

И. Берцелиус (1837):

«Известные вещества оказывают при соприкосновении с другими веществами такое влияние на последние, что возникает химическое действие,- одни вещества разрушаются, другие образуются вновь без того, чтобы тело, присутствие которого вызывает эти превращения, принимало в них какое-либо участие. Мы называем причину, вызывающую эти явления, каталитической силой».

М. Фарадей (1840).

«Каталитические явления можно объяснить известными свойствами материи, не снабжая ее при этом никакой новой силой».

П. Рашиг (1906):

«Катализ представляет вызываемое внешними причинами изменение строения молекулы, имеющее следствием изменение химических свойств».

Э. Абель (1913):

«Я пришел к выводу, что катализ осуществляется в результате реакции, а не простого присутствия вещества».

Л. Гурвич (1916):

«Каталитически действующие тела, притягивая к себе движущиеся молекулы гораздо сильнее, чем тела, лишенные каталитического действия, тем самым увеличивают силу удара, попадающих на их поверхность молекул».

Г. К. Боресков (1968):

«Когда-то катализ рассматривался как особое, немного таинственное явление, со специфическими законами, раскрытие которых должно было сразу в общей форме решить задачу подбора. Сейчас мы знаем, что это не так. Катализ по своей сущности – химическое явление. Изменение скорости реакции при каталитическом воздействии обусловлено промежуточным химическим взаимодействием реагирующих веществ с катализатором».

Если не принимать во внимание неудачную попытку Берцелиуса связать наблюдаемые явления с действием скрытой «каталитической силы», то, как можно заметить из приведенных выступлений, дискуссия шла в основном вокруг физических и химических аспектов катализа. Длительное время особенно популярной была энергетическая теория катализа, связывающая процесс возбуждения молекул с резонансной миграцией энергии.

Катализатор вступает во взаимодействие с реагирующими молекулами, образуя неустойчивые промежуточные соединения, которые распадаются с выделением продукта реакции и химически неизменного катализатора. Современные наши знания лучше всего отражены в высказывании Борескова.

Здесь, однако, возникает вопрос, а не может ли катализатор, поскольку он сам химически участвует в реакции, создать новое равновесное состояние? Если бы это было так, то идея о химическом участии катализатора немедленно вступала бы в противоречие с законом сохранения энергии. Чтобы избежать этого, ученые были вынуждены принять, а затем и экспериментально доказать, что катализатор ускоряет реакцию не только в прямом, но и в обратном направлениях. Те же соединения, которые изменяют и скорость и равновесие реакции, в строгом смысле этого слова не являются катализаторами.

Нам остается добавить, что обычно в присутствии катализатора имеет место ускорение химических реакций, и это явление называют «положительным» катализом в отличие от «отрицательного», при котором введение катализатора в реакционную систему вызывает снижение скорости. Строго говоря, катализ всегда повышает скорость реакции, но иногда ускорение одной из стадий (например, появление нового пути обрыва цепей) приводит к наблюдаемому торможению химической реакции.

Мы будем рассматривать только положительный катализ, который принято

подразделять на следующие типы:

а) гомогенный, когда реакционная смесь и катализатор находятся или в жидком или в газообразном состоянии;

б) гетерогенный – катализатор находится в виде твердого вещества, а реагирующие соединения в виде раствора или газообразной смеси; (Это наиболее распространенный тип катализа, осуществляемого, таким образом, на границе раздела двух фаз.)

в) ферментативный – катализатором служат сложные белковые образования, ускоряющие течение биологически важных реакций в организмах растительного и животного мира. (Ферментативный катализ может быть как гомогенным, так и гетерогенным, но из-за специфических особенностей действия ферментов целесообразно выделение этого вида катализа в самостоятельную область.)

Немного о промышленном катализе

На всю жизнь запомнилась мне проводившаяся по Энглеру разгонка полученного конденсата, в котором уже в начале опыта бензиновая фракция составляла 67%. Мы задержались до поздней ночи, ожидая, пока наберется достаточное количество для испытания на гоночном автомобиле, однако при этом думали, что ввиду высокого выхода бензина двигатель будет работать с детонацией. Никогда не забуду своего волнения на следующее утро, когда автомобиль забрался на холм без детонации!

Ю. Гудри, 1957 г.

Эти слова принадлежат Гудри – выдающемуся исследователю в области практического использования катализа. Они были сказаны им на Международном конгрессе по катализу в 1957 г., через двадцать лет после того, как в результате долгого рутинного поиска был, наконец, разрабо- тан принципиально новый способ превращения тяжелых нефтяных остатков в высокооктановое моторное топливо каталитический крекинг нефти. По словам Гудри, идея использования катализа для расщепления углеводородов нефти до низкомолекулярных продуктов, обладающих бо- лее низкой температурой кипения, пришла ему в голову еще в 1927 г. Но только спустя десять лет в Полсборо (США) на нефтеочистительном заводе компании Сокони- Мобил была построена первая в мире промышленная ус тановка каталитического крекинга с применением в качестве катализатора соединений окиси кремния и окиси алюминия (алюмосиликата). После 1937 г. в нефтяную промышленность прочно вошли каталитические способы переработки нефти, включающие в себя множество разнообразных химических процессов. К основным из относятся: расщепление углерод-углеродных связей и изомеризация первичных продуктов расщепления (крекинг); дегидрирование п изомеризация углеводородов с образованием разветвленных и ароматических молекул минг); гидрирование ненасыщенных углеводородов с повременным удалением серы и азота в виде сероводорода и аммиака (гидроочистка); введение углеводородных фрагментов в бензольное кольцо ароматических соединений (алкилирование).

Напомним, что до 1937 г. крекинг нефти осуществляли исключительно термическим способом: фракции нефти обрабатывали при температуре около 500° С и давлении 50-60 атпм. Каталитический крекинг ведут при ~50-500° С и атмосферном давлении в присутствии бентонитовых глин или искусственно приготовленных алюмосиликатов. При этом получают более высокооктановое топливо и ароматические углеводороды, которые могут быть использованы для дальнейшей химической переработки. Примерно одну треть моторного топлива в мире получают путем крекинга. При этом следует отметить, что более четверти всей мировой химической продукции вырабатывают из разных видов продуктов химической переработки нефти.

Важным компонентом промышленных катализаторов являются промоторы – вещества, добавление которых к катализатору в малых количествах (проценты или доли процента) увеличивает его активность, селективность или устойчивость. Если промотор добавляется к катализатору в больших количествах или сам по себе каталитически активен, катализатор называется смешенным. Вещества, воздействие которых на катализатор приводит к снижению его активности или полному прекращению каталитического действия, называется ядами каталитическими . Встречаются случаи, когда одна и та же добавка к катализатору является при одгих концентрациях промотором, а при других – ядом. в гетерогенном катализе (см. ниже) широко применяют носители вещества, сами по себе каталитически не активные, или мало акивные.

«География» катализа необычайно широка и разнообразна – от многотоннажного производства органических веществ до управления жизненно важными биохимическими процессами в живой клетке (а, возможно, также и до «управляемого» ядерного синтеза) – и охватывает поле деятельности исследователей многих профилей и направлений. Разумеется, мы не ставим задачей перечислять все основные области использования катализа и приведем лишь некоторые примеры из области химической промышленности.

Можно начать, например, с проблемы «фиксации» азота воздуха – чрезвычайно инертного вещества, которое даже с кислородом реагирует лишь при 3500-4000° С. Природные ресурсы связанного азота ограниченны, тогда как для производства продуктов сельского хозяйства необходимы огромные количества соединений азота. Ресурсы же свободного азота практически неограниченны. Химики переводят его в связанное (и более реакционноспособное) состояние с помощью реакции

Чтобы скорость этой реакции была приемлема с практической точки зрения, нужны высокие температура и давление. Однако с ростом температуры равновесие реакции постепенно смещается в сторону образования исходных веществ. С другой стороны, чем ниже температура и чем полнее протекает реакция образования аммиака, тем более заметно снижается скорость процесса. Поиск компромисса между действующими в разные стороны факторами привел Габера (1907) к созданию про- мышленного способа превращения азотоводородной смеси в аммиак при 500° С и 300 атм. Сейчас это главный спо- соб получения аммиака, который широко используется в производстве удобрений, азотной кислоты (каталитическое окисление аммиака над платиной), аммониевых солей, соды, синильной кислоты и т. д.

С помощью катализа осуществляют гидрогенизацию ненасыщенных химических соединений. Так, обрабатывая окись углерода водородом в присутствии цинк-хромовых катализаторов при 400° С и давлении около 300 атм, получают метанол CO+2H СНзОН, широко используемый в качестве растворителя исходного продукта для производства других ценных веществ.В частности, окисляя его на серебряном или медном катализаторе, можно получить формальдегид

СНзОН + О HСОН + Н О

не менее важное вещество, в больших количествах требляемое для синтеза пластических масс.

Метанол можно использовать и для получения дорода СНзОН+ Н О 3Н + СО.

В результате обработки растительных масел водородом в присутствии никелевых катализаторов образую твердые жиры (в частности, маргарин). Катализ применяется для ускорения процессов гидролиза многоатомных органических соединений, главным образом растительных углеводсодержащих соединений. Здесь катализаторами служат минеральные кислоты. При обработке кислотой растительного сырья (древесные от- ходы, подсолнечная лузга, солома и т. п.) происходит расщепление полисахаридных цепей (целлюлозы, пентозанов) с образованием пищевых и кормовых продуктов, глюкозы, ксилозы, фурфурола и целого ряда других кислородсодержащих производных. При совмещении процессов кислотного гидролиза и каталитической гидроге- низации (так называемого гидрогенолиза), проводимых в более жестких условиях (200° С, 50 атм), получают продукты глубокого расщепления молекулярных цепей глицерин, этиленгликоль, пропиленгликоль. Эти веще ства используются в производстве взрывчатых веществ, глифталевых смол, а также пластификаторов и растворителей.

Нельзя обойти молчанием производство полимеров и синтетических волокон. Здесь гордостью отечественной науки является разработанный С. В. Лебедевым (1932) процесс получения синтетического каучука по схеме: этиловый спирт – бутадиен – полибутадиен. Каталитические реакции в этом процессе осуществляются на первой стадии – дегидрогенизации и одновременной дегидратации этилового спирта. Сейчас бутадиен и изопрен получают также путем дегидрогенизации углеводородов нормального строения на алюмохромовых катализаторах, в частности из бутана. Это позволило вовлечь в производство синтетического каучука природные ресурсы газа и газы, отходящие при переработке нефти.

Большим событием в производстве полимеров явилось открытие стереоспецифической полимеризации ненасыщенных соединений в присутствии смешанных катализаторов Циглера – Натта (1952). Примером этого типа катализаторов может служить смесь триэтилалюминия и четы- реххлористого титана. Применение этих катализаторов дало возможность получать макромолекулы с определенной пространственной конфигурацией мономерных звеньев. Изделия из таких полимеров обладают прекрасными эксплуатационными свойствами. Заслуживает упоминания разработанная Мортоном (1947) исключительно активная каталитическая система, известная под кодовым названием «альфин» и представляющая собой смесь аллилнатрия, изопропилата натрия и хлорида натрия. В присутствии альфина бутадиен за несколько минут полимеризу- ется с образованием цепей, содержащих десятки и сотни тысяч мономерных звеньев.

Роль катализа в экологии

Огромную роль призван сыграть катализ в решении актуальнейшей проблемы – охраны окружающей среды. По словам Кусто, земной шар напоминает «одиноко несущийся в космическом пространстве автомобиль без выхлопной трубы». Действительно, нам некуда сбрасывать отходы, кроме как в ту же среду, в которой мы живем. Это довольно грустная тема, но о ней стоит говорить, так как человек уже начинает ощущать отрицательные стороны своей бурной ило многом бесконтрольной де- ятельности. Химики-каталитики настойчиво работают над этой про-. блемой и уже добились некоторых результатов. Разработаны специальные устройства для дожигания выхлопных газов автомобилей, работающие на основе каталитического окисления вредных компонентов газов. Подобраны катализаторы и условия для обезвреживания отходящих газов химических производств. Каталитические фильтры конструируются в виде патронов, заполненных металлической сеткой или керамическими материалами с нанесенными на них каталитическими агентами; работают эти фильтры при 250-350° С.

Мы привели температуру и давление, при которых ведут катализ реакций в промышленных условиях, отчасти для того, чтобы сравнить их с условиями подобных химических реакций, протекающих в организмах растительного и животного мира. Последние имеют гораздо большую скорость при обычных температуре и давлении. Достигается это с помощью биологических катализаторов – продуктов длительной, неизбежно сопро- вождающейся миллионами ошибок и тупиков, эволюции жизни на Земле. Вероятно, мы не скоро узнаем извилистый путь, по которому шла природа в поисках эффективных органических конструкций с их фантастической способностью ускорять в мягких условиях процессы в живых организмах.

Энергетический барьер

Все каталитические реакции – самопроизвольный процесс, т.е. протекают в направлении убыли энергии Гиббса – убыли энергии системы.

Давно уже было известно, что молекулы неионогены вступают в реакцию гораздо реже, чем сталкиваются друг с другом. Аррениус объяснил этот факт, предположив, что молекулы могут реагировать лишь в том случае, если в момент столкновения они обладают запасом энергии не ниже некоторой критической величины. В этом случае они называются «активными молекулами».

А. Резчик, 1945 г.

Такая теория существует, это теория абсолютных скоростей реакций, начало которой было положено теоретическими исследованиями Поляни в 1931 г. Ниже мы с ней познакомимся, а пока обратим внимание еще на один закон химической кинетики, известный под названием закона Аррениуса (1889). Закон связывает константу скорости реакции с некоторой характерной для данной реакции энергетической характеристикой, называемой энергией активации Е.

где k0 – константа, или предэкспоненциальный множитель; R – газовая постоянная, равная 1,987 кал/град*моль’, Т – температура в градусах шкалы Кельвина; е – основание натуральных логарифмов.

Чтобы найти величину энергии активации Е, изучают скорость реакции при разной температуре и находят для каждого значения Т величину константы скорости. Поскольку уравнение (26) содержит две неизвестные величины – k0 и Е, то поступают следующим образом. Логарифмируют (26)

строят график зависимости Ln(k) от 1/Т и определяют угловой коэффициент, который равен Е/R. Обычно используют не натуральные, а десятичные логарифмы.

(Последнее число – модуль перевода натуральных логарифмов в десятичные, умноженный на величину R = l.987.)

С законом Аррениуса связано широко распространенное в химии символическое изображение пути реакции в виде энергетической диаграммы, показанной на рис. 1. Смысл этого изображения таков: для того чтобы молекулы перешли из одного состояния H1 в другое H2, они должны обладать запасом внутренней энергии, не меньшим некоторого критического значения Е. Состояния Hl и Н2 разделены, таким образом, некоторым энергетическим барьером с высотой, равной энергии активации Е, и чем ниже высота барьера, тем больше скорость реакции в соответствии с уравнением Аррениуса. Это возрастание не беспредельно: даже при отсутствии барьера (Е = О) реакция будет протекать с некоторой конечной (а не бесконечно большой) скоростью, так как при Е=0 одновременно

Важным свойством энергетической диаграммы является то, что исходный H1 и конечный Н2, уровни не зависят от высоты барьера. Можно произвольно менять высоту барьера Е (если, конечно, мы знаем, как это сделать практически), но при этом уровни H1 и Н2 останутся без изменения, если заданы определенные внешние условия – температура, давление и т. п. Иначе говоря, существуют в принципе различные пути, по которым могут перемещаться молекулы из одного фиксированного состояния в другое, в том числе и такие, на которых энергетический барьер равен нулю; не может быть только такого случая, когда Е < О.

Прохождение через энергетический барьер

Закон Аррениуса – экспериментально установленный факт. Он утверждает, что скорость реакции возрастает с увеличением температуры для преобладающего большинства реакций, но он ничего не говорит о том, каким именно способом преодолевает реакционная система энергетический перевал. Имеет смысл разобраться в этом более детально, введя определенные модельные представления.

Представим себе простую реакцию обменного взаимодействия

A – B+C – D => A – D+B – C. (а)

Если бы мы могли расчленить взаимодействие молекул на отдельные элементарные акты – разрыв старых связей А – В и С – D и образование новых связей В – С и А – D, то наблюдали бы такую картину: вначале реакционная система поглощала энергию извне, необходимую для разрыва исходных химических связей, а затем происходило выделение ее за счет образования новых связей. На энергетической диаграмме это отразилось бы некоторой кривой, максимум которой соответствовал энергии диссоциации старых связей (рис. 2).

В действительности же энергия активации всегда ниже энергии диссоциации. Следовательно, реакция протекает таким образом, что энергия разрыва связей частично компенсируется энергией, выделяющейся при образовании новых связей. Физически это могло бы происходить, например, следующим образом. В момент сближения атомов В и С происходит формирование связи В…С и одновременно разрыхление связей А – В и С – D. При этом энергия частично «перетекает» из одного отсека в другой. Не трудно сообразить, что при сближении реагирующих атомов наступает рано или поздно такой момент, когда все связи находятся в одинаково разрыхленном состоянии.

Это состояние Поляни и Эйринг называют переходным и приписывают ему все свойства обычных молекул, за исключением того что колебания атомов вдоль линии, по которой идет сближение и разрыв связей ведут к образованию конечных продуктов.

По этим соображениям разумно ввести в схему реакции некоторое переходное состояние A – B+C – D =>* => A – D+B – C (б)

отвечающее вершине энергетического барьера. Взобраться на вершину могут только те молекулы, которые обладают определенным запасом внутренней энергии. Эту энергию они приобретают в результате столкновений с другими молекулами. Те из них, которые не набрали нужного количества энергии, скатываются обратно для пополнения своих запасов. Подъем на вершину – наиболее трудный участок пути, но, достигнув перевала, молекулы неудержимо скатываются вниз. Обратного пути для них нет. Чем больше молекул на вершине, тем выше скорость реакции. Эти простые рассуждения позволяют представить константу скорости в виде произведения двух величин:

одна из которых a* – константа мономолекулярного превращения активированного комплекса в продукты реакции, имеющая размерность частоты, а вторая К* – константа равновесия образования переходного комплекса.

В общем случае реакция может идти от исходных веществ к конечным продуктам различными путями, т.е. через различные перевалы(величины энергии активации). Однако, реакция, как правило, идет по одному из путей, такому, где энергетические затраты будут наименьшими.

Ускорение химических реакций с помощью кислот и оснований – наиболее распространенный прием из используемых химиками в повседневной работе. Мы рассмотрим только катализ «протонными» кислотами. В этом случае каталитически действующим началом является ион гидроксония образующийся при диссоциации кислоты в водных растворах

При умеренной концентрации соляная кислота полностью распадается на ионы. Карбоновые кислоты, в частности уксусная (б), диссоциируют не полностью: устанавливается определенное равновесие между ионами и недиссоциированными формами кислоты. В качестве меры диссоциации слабых кислот выбирают константу диссоциации, которая для уксусной кислоты равна 1,75*10^-15 моль/литр;

В чистом виде протон H+ в растворе не существует, так как ему выгоднее соединиться с молекулой воды. (Однако для краткости записывают просто H+, подразумевая под этим символом ион гидроксония.)

удобно выражать концентрацию водородных ионов в единицах рН=-lg, т. е. в единицах показателя степени (эту единицу измерения впервые ввел Сёренсен).

Чем выше концентрация кислоты (или кислотность среды), тем больше скорость реакции, но лишь до определенного значения pH. Исходя из этого попробуем разобраться в двух вопросах:

1) почему растет скорость с увеличением концентрации Н+ионов (т. е. с уменьшением рН);

2) почему реакция замедляется при добавке кислоты сверх определенной нормы;

Существует твердая уверенность в том, что все начинается с атаки атома азота на углерод карбонильной группы. Азот располагает двумя неспаренными электронами, а углерод не только их не имеет, но даже обладает некоторым дефицитом электронной плотности. Говорят, что карбонильная группа поляризована – часть внешнего электронного облака смещена в сторону кислородного атома.

Когда мы вводим в реакционную смесь кислоту, то образовавшиеся водородные ионы начинают атаковать молекулы обоих партнеров, но только один вид атаки будет способствовать химическому взаимодействию их – атака на карбонильный кислород. Почему же именно так? Да потому, что координация протона с атомом кислорода приведет к смещению электронной плотности от атома углерода в сторону протона. Произойдет оголение углерода, и он сможет легко принять электроны атома азота. В этом, собственно, и заключена природа кислотного катализа. Нетрудно сообразить, что чем больше концентрация H+ ионов (повторяем – чем меньше рН), тем больше концентрация протонизованных (по кислороду) молекул альдегида, тем выше должна быть скорость реакции.

Мы рассмотрели, конечно, упрощенную схему кислотного катализа, но она является хорошей иллюстрацией того, как изучают явление и к каким выводам можно прийти в результате знания зависимости скорости реакции от концентрации водородных ионов. Анализ явлений катализа под действием ионов ОН- (основной катализ) принципиально мало отличается от только что рассмотренного анализа кислотного катализа.

При изучении катализа органических реакций в сильно кислых средах встречаются с трудностями, которые обычно легко преодолеваются, когда работают с разбавленными кислотами. Но не будем заострять на этом внимание, обратим его лишь на то, какого рода информацию получают, изучая концентрационные зависимости.

Гомогенный катализ

Среди многочисленных каталитических реакций особое место занимает катализ в цепных реакциях.

«Цепными реакциями, как известно, называются такие химические и физические процессы, в которых образование в веществе или в смеси веществ некоторых активных частиц (активных центров) приводит к тому, что каждая из активных частиц вызывает целый ряд (цепь) последовательных превращений вещества» (Эмануэль, 1957).

Такой механизм развития процесса возможен благодаря тому, что активная частица взаимодействует с веществом, образуя не только продукты реакции, но и новую активную частицу (одну, две или более), способную к новой реакции превращения вещества, и т. д. Возникающая при этом цепь превращений вещества продолжается до тех пор, пока активная частица не исчезает из системы (происходит «гибель» активной частицы и обрыв цепи). Наиболее трудная стадия при этом – зарождение активных частиц (например, свободных радикалов), после же зарождения цепь превращений осуществляется легко.

Цепные реакции широко распространены в природе. Полимеризация, хлорирование, окисление и многие другие химические процессы идут по цепному, а точнее – по радикально-цепному (с участием радикалов) механизму.

Механизм окисления органических соединений (на ранних стадрях) в настоящее время установлен достаточно тщательно. Если обозначить окисляющееся вещество R-H (где Н – атом водорода, имеющий наименьшую прочность связи с остальной молекулой R), то этот механизм можно записать в следующем виде:

Катализаторы, например соединения металлов переменной валентности, могут оказывать влияние на любую из рассмотренных стадий процесса.

Остановимся теперь на роли катализаторов в процессах вырожденного разветвления цепей. Взаимодействие гидроперекиси с металлом может приводить как к ускорению так и к торможению реакции окисления органических веществ соединениями металлов переменной валентности в зависимости от характера продуктов, образующихся при распаде гидроперекиси. Соединения металлов образуют с гидроперекисями комплекс, который распадается в «клетке» растворителя среды, если обра-зующиеся при распаде комплекса радикалы успеют выйти из клетки, то они инициируют процесс (положительный катализ). Если же эти радикалы не успеют выйти и рекомбинируют в клетке в молекулярные неактивные продукты, то это приведет к замедлению радикально-цепного процесса (отрицательный катализ), поскольку в этом случае гидроперекись – потенциальный поставщик новых радикалов- расходуется вхолостую.

До сих пор мы рассматривали лишь неглубокие стадии процессов окисления; на более глубоких стадиях например в случае окисления углеводородов, образуются кислоты, спирты, кетоны, альдегиды, которые также могут реагировать с катализатором и служить дополнительным источником свободных радикалов в реакции, т. е. в этом случае будет налицо дополнительное вырожденное разветвление цепей.

Гетерогенный катализ

К сожалению, до сих пор, несмотря на достаточно большое число теорий и гипотез в области катализа, многие основополагающие открытия были сделаны случайно или в результате простого эмпирического подхода. Как известно, случайно был найден ртутный катализатор сульфирования ароматических углеводородов М. А. Ильинским, который нечаянно разбил ртутный термометр: ртуть попала в реактор, и реакция пошла. Аналогичным образом были обнаружены теперь всем хорошо известные, а в свое время открывшие новую эру в процессе полимеризации катализаторы стереоспецифической полимеризации Циглера.

Естественно, что такой путь развития учения о катализе не соответствует современному уровню науки, и именно этим объясняется повышенный интерес к изучению элементарных стадий процессов в гетерогенно-каталитических реакциях. Эти исследования – прелюдия для создания строго научных основ подбора высокоэффективных катализаторов.

Во многих случаях роль гетерогенных катализаторов в процессе окисления сводится к адсорбции органического соединения и кислорода с образованием на поверхности катализатора адсорбированного комплекса этих веществ. Такой комплекс разрыхляет связи компонентов и делает их более реакционноспособными. В некоторых случаях катализатор адсорбирует лишь один компонент, который диссоциирует на радикалы. Например, пропилен на закиси меди диссоциирует с образованием аллильного радикала , легко вступающего затем в реакцию с кислородом.

Выяснилось, что каталитическая активность металлов переменной валентности в значительной мере зависит от заполнения d-орбиталей в катионах окислов металлов.

По каталитической- активности в реакции разложения многих гидроперекисей соединения металлов располагаются следующим ря-

Мы рассмотрели один из возмжных путей инициирования процесса – взаимодействие гидроперекиси с катализатором. Однако в случае окисления реакция гетерогенного инциирования цепей может протекать как путем распада на радикалы гидроперекиси, так и путем взаимодействия углеводорода с кислородом, активированным поверхностью катализатора. Инициирование цепей может быть обусловлено участием заряженной формы органического соединения RH+, образующегося при взаимодействии RH с катализатором. Так обстоит дело с катализом в реакциях инициирования (зарождения и разветвления) цепей. Роль гетерогенных катализаторов в реакциях продолжения цепи особенно четко подчеркивается изменением скорости и направления изомеризации перекисных радикалов.

Катализ в биохимии

Ферментативный катализ неразрывно связан с жизнедеятельностью организмов растительного и животного мира. Многие жизненно важные химические реакции, протекающие в клетке (что-то около десяти тысяч), управляются особыми органическими катализаторами, именуемыми ферментами или энзимами. Термину «особый» не следует уделять пристального внимания, так как уже известно, из чего построены эти ферменты. Природа избрала для этого один единственный строительный материал – аминокислоты и соединила их в полипептидные цепи различной длины и в разной последовательности

Это так называемая первичная структура фермента, где R – боковые остатки, или важнейшие функциональные группы белков, возможно, выступающие в качестве активных центров ферментов. На эти боковые группы и ложится основная нагрузка при работе фермента, пептидная же цепь играет роль опорного скелета. Согласно структурной модели Полинга – Кори, она свернута в спираль, которая в обычном состоянии стабилизирована водродными связями между кислотными и основными центрами:

Для некоторых ферментов установлены полный аминокислотный состав и последовательность расположения их в цепи, а также сложная пространственная структура. Но это все же очень часто не может помочь нам ответить на два главных вопроса:

1) почему ферменты так избирательны и ускоряют химические превращения молекул только вполне определеyyой структуры (которая нам тоже известна);

2) каким образом фермент снижает энергетический барьер, т. е. выбирает энергетически более выгодный путь, благодаря чему реакции могут протекать при обычной температуре.

Строгая избирательность и высокая скорость – два основных признака ферментативного катализа, отличающие его от лабораторного и производственного катализа. Ни один из созданных руками человека катализаторов (за исключением, пожалуй, 2-оксипиридина) не может сравниться с ферментами по силе и избирательности воздействия на органические молекулы.

Активность фермента, как и любого другого катализатора, тоже зависит от температуры: с повышением температуры возрастает и скорость ферментативной реакции. При этом обращает на себя внимание резкое снижение энергии активации Е по сравнению к некаталитической реакцией. Правда, это происходит не всегда. Известно много случаев, когда скорость возрастает благодаря увеличению независящего от температуры предэкспоненциального множителя в уравнении Аррениуса.

Для иллюстрации необычайно высокой эффективности ферментов приведем два примера и сравним действие обычного кислотного катализатора с ферментативными. В качестве меры активности приведем все три параметра уравнения Аррениуса – константу скорости (k, л/моль*сек), предэкспоненциальный множитель А и энергию активации (Е, ккал/моль).

Гидролиз мочевины:

Эти примеры особенно интересны в том отношении, что в первом случае увеличение константы скорости в присутствии уреазы обусловлено главным образом снижением энергии активации (на 17-18 ккал/моль), тогда как во втором – влияние миозина на константу скорости осуществляется за счет увеличения предэкспонциального множителя.

Активность ферментам зависет также от кислотности среды, в которой протекает химическая реакция. Примечательно, что кривая этой зависимости от рН среды апоминает колоколообразные кривые кислотно-основного катализа.(см рис 3)

Создается впечатление, что ферментам предоставлено право решать, что в данном конкретном случае им выгодно – организовать более прочную связь активного центра с молекулой субстрата или произвести разупорядочение своей структуры.

Трудно сказать, какими соображениями руководствуется фермент при выборе пути активации субстрата. Во всяком случае, изучение кинетики ферментативной реакции и термодинамики образования промежуточных комплексов, хотя и дает ценную количественную информацию, не позволяет полностью раскрыть молекулярный и электронный механизм работы фермента. Здесь, как и при изучении обычных химических реакций, приходится идти по пути моделирования – грубо говоря, придумывания таких молекулярных механизмов, которые по крайней мере не противоречили бы данным эксперимента и элементарной логике химических реакций. Беда в том, что при достаточно развитом воображении таких «хороших» механизмов можно придумать довольно много. Ниже мы познакомимся с некоторыми из таких модельных представлений, а теперь посмотрим, как исследователи устанавливают природу активные центров ферментов.

Увеличение кислотности среды будет благодриятно для одних элементарных стадий и неблагоприятно для других. При наличии таких конкурирующих фактов, как нетрудно догадаться, должна существовать некоторая оптимальная кислотность среды, при которой фермент может работать с максимальной эффективностью.

Итак, анализ зависимостей скорости от рН является весьма эффективным средством идентификации функциональных групп белковой молекулы фермента, участвующих в процессе активации молекул субстрата. Зная природу активных центров, можно представить себе, как они работают. Конечно, при этом приходится пользоваться теми же представлениями о механизме элементарных актов, которые сложились при изучении обычных реакций органической химии. Вводить какие-то особые механизмы нет никакой необходимости. Существует твердое убеждение в том, что работа фермента сводится в конечном счете к совокупности простых операций, аналогичных тем, которые совершаются при взаимодействии органических молекул в обычных пробирочных условиях.

Итак мы знаем:

1) В ферментативном катализе принимают участие по крайней мере две функциональные группы, и механизм ферментативной реакции включает в себя определенную последовательность элементарных актов, которая обеспечивает энергетически более выгодный маршрут, чем неферментативная реакция;

2) активные центры на полипептидной цепи расположены так, чтобы в определенный момент и в определенном месте они могли взаимодействовать с молекулой субстрата и осушествить серию согласованных химических актов.

Цель:

  1. Сформулировать знания о химическом составе, образовании и строении белков.
  2. Дать характеристику основным структурам белковых молекул.
  3. Сформировать знания о важнейших свойствах и функциях белков.
  4. Провести лабораторную работу по наблюдения расщепления пероксида водорода ферментом каталазой.

Оборудование:

  • демонстрационный материал,
  • конструктор молекул,
  • таблица “Строение белковых молекул”,
  • отрезок провода длиной около 50 см,
  • оборудование для практического опыта: 6 пробирок (в 1 и 2 кусочки сырого мяса, в 3 и 4 кусочки сырого картофеля, в 5 и 6 отварной картофель),
  • перекись водорода.

Ход урока

1. Организационный момент

Учитель объявляет тему урока, говорит о целеобразности проведения интегрированного урока для изучения этой темы.

2. Актуализация знаний

Учитель контролирует работу в группах и затем, во время обсуждения, дополняет сообщения учащихся. Обсуждение строится следующим образом:

1. Состав, строение и образование белковых молекул.

Объяснение учителя химии из каких атомов, молекул строятся молекулы полипептидов. Разнообразие белковых молекул, их химические свойства с точки зрения молекул. Затем ребята первой группы демонстрируют сборку молекулы полипептида из АК, во время реакции конденсации. Учитель записывает на доске, учащиеся - в тетрадях схему полипептидной связи.

2. Структура белковой молекулы (материал подготовлен учащимися)

Ребята второй группы демонстрируют с помощью куска проволоки механизм образования 1,2,3,4 структуры белка. В тетрадь записываются схемы структуры белка и типы химических связей, которые поддерживают эти структуры.

3. Свойства и назначение белков (материал подготовлен учащимися)

Ребята третьей группы делают сообщение, которое подготовили, пользуясь дополнительной литературой. Учитель дополняет сообщение ребят, подчеркивает значимость белков в органическом мире. В тетрадь записываются эти сведения.

4. Выполнение лабораторной работы

Цель: Работа выполняется демонстрационно. Результаты и выводы записываются в лист-отчет, который сдается вместе с тетрадью в конце урока.

3. Обобщение и контроль знаний

Проводятся поэтапно, после обсуждения каждого блока темы.

4. Домашнее задание

Запись в тетради, параграф 3,4.

5. Задания

Задание №1

Строение белковой молекулы

1)Используя химический конструктор, построить фрагмент полипептида по схеме:

Условные обозначения (цвета фрагментов конструктора):

  • C - черный
  • H - белый
  • O - красный
  • N - зеленый
  • R - серый

2) Используя подсказку сформулировать определение понятия “белок”.

Аминокислота – дипептид – полипептид - БЕЛОК

Задание №2

Строение пространственной структуры белка

1) Прочитайте информацию о строении структуры белка (из дополнительных источников), используя проволоку, покажите процесс перехода из 1-ой во 2, 3, 4 структуры белка и обратно. Дайте определение денатурации и ренатурации, условия этих процессов.

2) Какие связи стабилизируют вторичную, третичную и четвертичную структуру белка.

Задание №3

1) Используя дополнительную литературу, выпишите, какие функции выполняют белки.

2) Чем вызывается необходимость присутствия в пище витаминов.

3) Что является “ключом”, а что – “замком” в фермент-субстратном комплексе, согласно гипотезе Фишера.

Задание №4

Выполнение практической работы и объяснение ее результатов.

Ход выполнения:

Прилейте по 2 мл H 2 O 2 (пероксида водорода) в пробирки с кусочками сырого мяса, с сырым и вареным картофелем. Наблюдайте выделение пузырьков газа. Объясните наблюдаемые явления.

  1. Объясните, почему реакции, катализируемые ферментами, зависят от pH, от температуры?
  2. Как зависит скорость реакции от концентрации субстрата и фермента?

Структура белковой молекулы

Кроме последовательности аминокислот полипептида (первичной структуры), крайне важна трёхмерная структура белка, которая формируется в процессе сворачивания (фолдинга (от англ. folding ), то есть сворачивание). Трёхмерная структура формируется в результате взаимодействия структур более низких уровней. Выделяют четыре уровня структуры белка:

Первичная структура - последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы - сочетания аминокислот, важных для функции белка. Консервативные мотивы сохраняются в процессе эволюции видов, по ним можно предсказать функцию неизвестного белка.

Вторичная структура - локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями и гидрофобными взаимодействиями. Ниже приведены некоторые распространённые типы вторичной структуры белков:

Спирали - плотные витки вокруг длинной оси молекулы, один виток составляют 4 аминокислотных остатка, спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Спираль построена исключительно из одного типа стереоизомеров аминокислот (L), хотя она может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глютаминовой кислоты, лизина, аргинина, близкорасположенные аспарагин, серин, треонин и лейцин могут стерически мешать образованию спирали, пролин вызывает изгиб цепи и также нарушает -спирали.

Листы (складчатые слои) - несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в -спирали. Эти цепи обычно направлены N-концами в противоположные стороны (антипараллельная ориентация). Для образования -листов важны небольшие размеры R-групп аминокислот, преобладают обычно глицин и аланин.

Третичная структура - пространственное строение полипептидной цепи - взаимное расположение элементов вторичной структуры, стабилизированное взаимодействием между боковыми цепями аминокислотных остатков. В стабилизации третичной структуры принимают участие:

  • ковалентные связи (между двумя цистеинами - дисульфидные мостики);
  • ионные (электростатические) взаимодействия (между противоположно заряженными аминокислотными остатками);
  • водородные связи;
  • гидрофобные взаимодействия.

Белки разделяют на группы согласно их трёхмерной структуре.

Четверичная структура - субъединичная структура белка. Взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса.

Также выделяют:

Трёхмерную структуру белка - набор пространственных координат, составляющих белок атомов.

Субъединичную (доменную) структуру белка - последовательность участков белка, имеющих известную функцию или определённую трёхмерную структуру.

Функции белков в организме

Так же как и другие биологические макромолекулы (полисахариды, липиды) и нуклеиновые кислоты, белки - необходимые компоненты всех живых организмов, и участвуют в каждом внутреннем процессе клетки. Белки осуществляют обмен веществ и энергетические превращения. Белки входят в состав клеточных структур - органелл или секретируются во внеклеточное пространство для обмена сигналами между клетками и гидролиза пищевых субстратов. Следует отметить, что классификация белков по их функции достаточно условна, потому что у эукариот один и тот же белок может выполнять несколько функций. Хорошо изученным примером такой многофункциональности служит лизил-тРНК-синтетаза - фермент из класса аминоацил-тРНК синтетаз, который не только присоединяет лизин к тРНК, но и регулирует транскрипцию нескольких генов.

Каталитическая функция

Наиболее хорошо известная роль белков в организме - катализ различных химических реакций. Ферменты - группа белков, обладающая специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации и репарации ДНК и синтезе РНК. Известно несколько тысяч ферментов; среди них такие, как например пепсин, расщепляют белки в процессе пищеварения. В процесс пострансляционной модификации некоторые ферменты добавляют или удаляют химические группы на других белках. Известно около 4000 реакций, катализируемых белками. Молекулы, которые присоединяются к ферменту и изменяются в результате реакции, называются субстратами.

Хотя ферменты обычно состоят из сотен аминокислот, только небольшая часть из них взаимодействует с субстратом, и еще меньшее количество - в среднем 3-4 аминокислоты, часто расположенные далеко друг от друга в первичной аминокислотной последовательности - напрямую участвуют в катализе. Часть фермента, которая присоединяет субстрат и содержит каталитические аминокислоты, называется активным центром фермента.

Структурная функция

Структурные белки, как своего рода арматура, придают форму жидкому внутреннему содержимому клетки. Большинство структурных белков являются филаментозными белками: например, мономеры актина и тубулина - это глобулярные, растворимые белки, но после полимеризации они формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму. Коллаген и эластин - основные компоненты соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

Защитная функция

Белки, входящие в состав крови, участвуют в защитном ответе организма как на повреждение, так и на атаку патогенов. Примерами первой группы белков служат фибриногены и тромбины, участвующие в свёртывании крови, а антитела (иммуноглобулин), нейтрализуют бактерии, вирусы или чужеродные белки. Антитела, входящие в состав адаптативной иммунной системы, присоединяются к чужеродным для данного организма веществам, антигенам, и тем самым нейтрализуют их, направляя к местам уничтожения. Антитела могут секретироваться в межклеточное пространство или закрепляться в мембранах специализированных В-лимфоцитов, которые называются плазмоцитами. В то время как ферменты имеют ограниченное сродство к субстрату, поскольку слишком сильное присоединение к субстрату может мешать протеканию катализируемой реакции, стойкость присоединения антител к антигену ничем не ограничено.

Регуляторная функция

Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма. На внутриклеточном уровне транскрипция генов управляется присоединением белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов, а деградация РНК и белков также проводится специализированными белковыми комплексами. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы - ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

Транспортная функция

Растворимые белки, участвующие в транспорте малых молекул, должны иметь высокое сродство (афинность) к субстрату, когда он присутствует в высокой концентрации, и легко его высвобождать в местах низкой концентрации субстрата. Примером транспортных белков можно назвать гемоглобин, который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов.

Запасная (резервная) функция белков

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных; белки третичных оболочек яйца (овальбумины) и основной белок молока (казеин) также выполняют, главным образом, питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма.

Рецепторная функция

Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, который с помощью конформационных изменений передаётся на другую часть молекулы, активирующую передачу сигнала на другие клеточные компоненты. У мембранных рецепторов часть молекулы, связывающаяся с сигнальной молекулой, находится на поверхности клетки, а домен, передающий сигнал, внутри.

Моторная и сократительная функции

Целый класс моторных белков, участвует как в макро-движениях организма, например, сокращении мышц (миозин), так и в активном и направленном внутриклеточном транспорте (кинезин, динеин). Динеины и кинезины проводят транспортировку молекул (так называемого карго) вдоль микротрубочек с использованием гидролиза АТФ в качестве источника энергии. Динеины переносят карго из цитоплазмы по направлению к центросоме, кинезины в противоположном направлении.

Лабораторный журнал

Дата

Лабораторная работа №

Фамилия, имя: класс:

Тема: Каталитическая активность ферментов в живых тканях

Цель: Сформировать знания о роли ферментов в клетках, закрепить умения проводить опыты и объяснять результаты работы

Оборудование: 3%-ый раствор пероксида водорода, пробирки, пинцет, ткани растений (кусочек сырого и вареного картофеля), ткани животных (кусочек сырого и вареного мяса).

Название и № опыта Что брали? Что делали? Что наблюдали? Выводы и уравнения реакции
1. Исследование сырого мяса Кусочек сырого мяса, пероксид водорода Капнули пероксид на кусочек сырого мяса
2. Исследование сырого картофеля Кусочек сырого картофеля, пероксид водорода Капнули пероксид на кусочек сырого картофеля
3. Исследование вареного картофеля Кусочек вареного картофеля, пероксид водорода Капнули пероксид на кусочек вареного картофеля
Вывод по работе:

1. В каких пробирках проявилась активность фермента и почему?

Ответ:

2. Как проявляется активность фермента в живых и мертвых тканях

Ответ:

3. Различается ли активность фермента в живых тканях растений и животных?

Загрузка...
Top